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The Second International Conference on Stochastic Methods (ICSM-2) was held
May 25–31, 2017 in the village of Abrau-Durso (at the Moryak Hotel) on the Black
Sea coast, the same place where the first conference (ICSM-1) took place in 2016.
As in 2016, the organizers of this conference were the Steklov Mathematical Insti-
tute of RAS (Department of Theory of Probability and Mathematical Statistics),
Moscow State University (Department of Probability Theory), and the Don State
Technical University (Department of Higher Mathematics), the main university of
Rostov-on-Don. The chairman of this conference was A. N. Shiryaev, academician of
the Russian Academy of Sciences, who also headed the Organizing Committee and
the Program Committee.

The conference committees were as follows. Organizing Committee: I. V. Pav-
lov (Deputy Chairman), E. V. Burnaev, M. V. Zhiltukhin, V. V. Shamraev, and
S. Ya. Shatskikh; Program Committee: A. A. Gushchin (Deputy Chairman),
Yu. E. Gliklikh, and D. B. Rokhlin. Organizational issues were solved at the confer-
ence by the Local Organizing Committee consisting of I. V. Pavlov (Chairman),
V. V. Shamraeva, S. I. Uglich, and N. P. Krasiy.

In addition to scientists from Russia, scientists from the UK, Sweden, Bulgaria,
France, the USA, and Uzbekistan took part in the conference. Thirteen lectures and
41 talks were given. The themes of the lectures were as follows: A. N. Shiryaev
(jointly with E. A. Feinberg), On forward and backward Kolmogorov equations of
general jump Markov processes; A. B. Piunovskiy, On the strategies in controlled
jump Markov processes; A. A. Gushchin, The joint law of terminal values of a non-
negative submartingale and its compensator; Yu. E. Gliklikh, Stochastic equations
and inclusions with mean derivatives and their applications; D. B. Rokhlin, Central
limit theorem under uncertainty and the problem of prediction with expert strategies;
F. S. Nasyrov, Representation of solutions of wave equations as mathematical expec-
tations; V. G. Zadorozhnii, On moment functions of a solution of differential equations
which are multiplicatively perturbed by random noise; A. A. Lykov and V. A. Maly-
shev, How statistical is nonequilibrium statistical physics?; I. V. Pavlov, Interpolat-
ing martingale measures and Haar extensions of financial markets; S. Ya. Shatskikh
(jointly with L. E. Melkumova), Maximum-likelihood method in de Finetti’s theorem;
O. E. Kudryavtsev, Numerical methods for liquidity estimation in models admitting
jumps; Ya. I. Belopol’skaya, Probabilistic representations of the solution to Cauchy
problem for parabolic system with cross-diffusion; N. V. Smorodina, Representation
of solutions to initial-boundary value problems by mean values of functionals of pro-
cesses reflecting from the boundary.

The joint and sectional sessions were chaired by A. A. Gushchin, S. Ya. Shatskikh,
F. S. Nasyrov, E. L. Presman, V. G. Zadorozhnii, S. M. Sitnik, I. V. Tsvetkova,
V. V. Shamraeva, A. V. Nikitina, Yu. E. Gliklikh, O. E. Kudryavstev, V. V. Rodo-
chenko, and L. E. Melkumova.

∗Originally published in the Russian journal Teoriya Veroyatnostei i ee Primeneniya, 62 (2017),
pp. 798–839.

http://www.siam.org/journals/tvp/62-4/T98886.html
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ICSM-2 was superior to ICSM-1 in terms of the number of speakers, the scientific
level of the talks (among the participants of ICSM-2 were one academician of the
Russian Academy of Sciences, 22 doctors of science, 20 candidates of science, and seven
postgraduates), and in terms of organizational aspects of arrival and departure of the
participants. The abstracts of the talks underwent peer review and are published
below.

The Organizing Committee arranged an excursion to Dinomorskoe village, where
at the “Raduga” sports and fitness center of the Don State Technical University
a number of lectures and talks were given.

Financial support from the Don State Technical University (B. Ch. Meskhi, rec-
tor) and the Russian Foundation for Basic Research (grant 17-01-20079-g) contributed
immeasurably to the successful implementation of the conference.

The Third International Conference on Stochastic Methods will be held in June
of 2018 at the “Raduga” sports and fitness center (Divnomorskoe).

A. N. Shiryaev, I. V. Pavlov, T. B. Tolozova, V. V. Shamraeva

V. I. Arkin, A. D. Slastnikov (Moscow, Russia). Threshold strategies for
optimal stopping problems for Itô diffusion processes. 1

Let Xt, t� 0, X0 = x be a one-dimensional regular diffusion Itô process with
values in the interval I and with boundary points l, r, which may or may not belong
to the interval. Consider the optimal stopping problem Exg(Xτ )e

−ρτχ{τ<∞} → max,
where the maximum is taken over some class of Markov moments τ (not necessarily
a.s. finite).

If one knows the structure of the solution (for example, the first exit time from the
process beyond some level), then one can search for the specific form of the optimal
stopping time in a more narrow class of Markov moments (which is much simpler)
and then prove its optimality among all Markov moments. The general problem here
is as follows: what are conditions for the stopping time, which is optimal in some class
of moments, to be optimal also among all Markov moments?

In the present paper, this problem is searched for in the classes of stopping times
defined by one or two thresholds: τp = inf{t � 0: Xt � p} and τ(a,b) = inf{t �
0: Xt /∈ (a, b)}, respectively.

Let τp∗ be the optimal stopping time in the class M1 = {τp, l < p < r} for all x,
l < x < r. Then a necessary and sufficient condition for τp∗ to be an optimal stopping
time over all Markov moments (for all x, l < x < r) is that the benefit function g is
ρ-excessive for the process Xt∧τ(p∗,r)

, t � 0, with the initial state x, p∗ < x < r.
A similar result also holds for the time τ(a∗,b∗), which is optimal in the class of

Markov moments M2 = {τ(a,b), l < a < b < r}.
We also put forward optimality conditions for a stopping time in the class M1

and give conditions for a function to be ρ-excessive.

A. S. Asylgareev (Ufa, Russia). Pathwise comparison theorems for
stochastic differential equations and their applications.

Consider two stochastic differential equations with the Stratonovich integral with
respect to the Wiener process:

(1) dξ
(k)
t = σk(t, ξ

(k)
t ) ∗ dWt + bk(t, ξ

(k)
t ) dt, ξ

(k)
t |t=t0 = ξ

(k)
0 , k = 1, 2.

1Supported by the Russian Science Foundation (grant 15-06-03723).
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The aim of the present study, which continues [1], is to prove comparison theorems for
the stochastic differential equations (1). Our approach is based on the fact that the

solutions to equations (1) can be written as ξ
(k)
t = ϕk(t,Wt + Ck(t)), where ϕk(t, u)

are deterministic functions and Ck(t) are solutions of an ordinary differential equation
with a random right-hand side (see [2]). Our main result is as follows.

Theorem 1. We assume that the following conditions are satisfied for all t � 0:
(a) ϕ2

(
t,
∫ u

ξ
(1)
0
(σ1(t, ψ))

−1 dψ
)
� u for all u ∈ R; (b) σ2(t, u) > 0 for all u ∈ R;

(c) C2(t) � C1(t) almost surely. Then ξ
(2)
t � ξ

(1)
t for all t � 0 with probability 1.

The comparison theorems proved in our study are used for investigating pathwise
stability of equations of the form (1).

REFERENCES

[1] A. S. Asylgareev and F. S. Nasyrov, Theorems of comparison and stability with probability 1
for one-dimensional stochastic differential equations, Siberian Math. J., 57 (2016), pp. 754–761.

[2] F. S. Nasyrov, Local Times, Symmetric Integrals and Stochastic Analysis, Fizmatlit, Moscow,
2011.

I. V. Atlasov (Moscow, Russia). Operation of two parallel devices such
that at least one of them should work.

This paper extends one problem from Gnedenko’s book [1]. Consider the opera-
tion of a system composed of two interchangeable devices. These devices operate in
sequence, break, or undergo repair. The system halts if the repair time of one device
exceeds the operation time of the other, that is, when there is such a time interval
when one device is being repaired and the other is already broken. In the book [1], the
change time of one (broken) device by the other (repaired) was considered immaterial;
a characteristic function of the system operation time was considered, and ways to
increase the mean operation time of the system were put forward. This study was
continued in [2] and [3].

In the present study, we consider a system consisting of two elements operating
in parallel. The system halts if both devices are under repair. The change time of
one (broken) device with the other (repaired) is considered important. We build the
characteristic function of the continuous operation time of the system. We find the
average operation time of the system and consider ways to increase it. Next, we con-
sider the characteristic function in the case when the operation times and repair times
of each of the devices are distributed exponentially and consider recommendations of
how, by varying parameters of these distributions, to increase the mean operation
time of the system. For this case, we also consider the structure of the distribution
function of the operation time of the system.

REFERENCES

[1] B. V. Gnedenko, The Theory of Probability, URSS, Moscow, 2001 (in Russian).
[2] I. V. Atlasov, About efficiency of work of several interchangeable devices, Vestnik TVGU. Ser.

Prikl. Matem., no. 4, 2015, pp. 85–101.
[3] I. V. Atlasov, Operation of two parallel devices with regard to the time of their replacement,

Vestnik TVGU. Ser. Prikl. Matem., no. 2, 2016, pp. 49–79.
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Ya. I. Belopol’skaya (St. Petersburg, Russia). Probabilistic representa-
tions of the solution to Cauchy problem for a parabolic system with cross-
diffusion. 2

We propose an approach (see [1], [2], [3]) that enables one to obtain probabilistic
representations of generalized solutions to the Cauchy problem for systems of nonlin-
ear parabolic equations appearing in various problems in physics, biology, chemistry,
and other areas:

∂tuq = div

( d1∑
m=1

F qm(x, u)∇um
)
+

d1∑
m=1

aqm(x, u,∇u)∇um +

d1∑
m=1

cmqum,

uq(0)(x) = uq0(x), q = 1, . . . , d1, x ∈ Rd.

Our approach is demonstrated for an example of the Cauchy problem for the simplest
system

(1) ∂tum = Δ(um[u1 + u2]) + cm(u)um, um(0, x) = um0(x) > 0, m = 1, 2,

of quasilinear parabolic equations with cross-diffusion, which is a particular case of
the Shigesada, Kawasaki, Teramoto model [4] that describes the evolution of densities
of concentration of competing populations.

Let Mu(x) =
√
u1(t, x) + u2(t, x), cm(u) = am − bmu1 − cmu2 and w̃(θ) = w(t−

θ)− w(t). Consider the system of stochastic differential equations

dξ̂(t) = [Mu∂xMu](ξ̂(θ)) dθ −Mu(ξ̂(θ)) dw̃(θ), ξ̂(0) = x,(2)

dηm(θ) = c̃mu (ξ(θ))ηm(θ) dθ + Cu
m(ξ(θ))ηm(θ) dw(θ), ηm(0) = 1,(3)

where Cm
u (ξ(θ))= −∇Mu(ξ(θ)), c̃

m
u (ξ(θ))=cmu (ξ(θ))−〈∇Mu(ξ(θ)),∇Mu(ξ(θ))〉.

We set φ0,θ(y) = ξ0,y(θ), ψ
m
0,θ(x) = ξ̂0,x(θ) = ξ0,y(t − θ), η̂m(θ) = ηm(t − θ)

and note that ψm
0,θ ◦ φm0,θ(y) = y, ηm(t) = Um(0, t), η̂m(t) = Ûm(0, t), m = 1, 2, and

Ûm(0, t)Um(0, t) = 1.

Theorem 1. Let u1, u2 be bounded strictly positive differentiable functions sat-
isfying (1) in the generalized sense. Then there exist random processes ξ̂m(t), ηm(t),
m = 1, 2, satisfying (2), (3) such that the functions u1, u2 admit a probabilistic rep-
resentation of the form

(4) um(t) = E
[
η̂m(t)u0k ◦ ψ0,t

]
, m = 1, 2.

Theorem 2. There exists a closed system of stochastic relations that includes
(2)–(4) and is associated with system (1).

REFERENCES

[1] Ya. I. Belopolskaya, Stochastic interpretation of quasilinear parabolic systems with cross
diffusion, Theory Probab. Appl., 61 (2017), pp. 208–234.

[2] Ya. I. Belopol’skaya, Probabilistic models of the dynamics of the growth of cells under contact
inhibition, Math. Notes, 101 (2017), pp. 406–416.

[3] Ya. I. Belopolskaya, Probabilistic representation of the Cauchy problem solutions for systems
of nonlinear parabolic equations, Global and Stochastic Analysis, 3 (2016), pp. 25–32.

[4] N. Shigesada, K. Kawasaki, and E. Teramoto, Spatial segregation of interacting species,
J. Theoret. Biol., 79 (1979), pp. 83–99.

2Supported by the Russian Science Foundation (grant 15-01-01453).
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A. N. Beskopyl’nyi, N. I. Beskopyl’naya (Rostov-on-Don, Russia).
Stochastic models of mechanical properties of materials.

The stochastic nature of the microstructure of metals is responsible for inho-
mogeneity in the development of plastic strain and fracture both for elastic [1] and
brittle materials [2], [3]. To find the form of distribution F (x) = P(Θ � x) of
the random variable Θ (the ultimate strength of metal), we consider an approach
based on special transformation of random variables [4]. The stress–strain curve for
uniaxial tension is adequately approximated by the power-like function σ = σ0 +
A0ε

m on the interval σ ∈ [σ0;σB ]. Consider the new variable u = u(σ), which is
responsible for accumulation of plastic strain: u =

∫ σB

σ0
ε′(z) dz = B0(σB − σ0)

γ+1.

Now the distribution law for the ultimate strength reads as G(x) = 1− exp[−B0(x−
σ0)

γ+1]. This is a three-parameter Weibull law with shift parameter, which plays the
leading role in assessing the strength of metal and subsequent strength analysis. We
consider also various options of approximation of the strain–stress dependence, and
corresponding distribution laws are obtained. Experimental verification of the results
obtained show that the above approach provides the best approximation in terms of
several statistical criteria.

REFERENCES

[1] D. M. Belen’kii, A. N. Beskopyl’nyi, and L. G. Shamraev, Determination of technological
and operational parameters of steels, Industrial Laboratory, 64 (1998), pp. 340–343.

[2] M. Noorian-Bidgoli and L. Jing, Stochastic analysis of strength and deformability of frac-
tured rocks using multi-fracture system realizations, Int. J. Rock. Mech. Min. Sci., 78 (2015),
pp. 108–117.

[3] D. Feng, X. Ren, and J. Li, Stochastic damage hysteretic model for concrete based on mi-
cromechanical approach, Int. J. Non-Linear Mech., 83 (2016), pp. 15–25.

[4] A. N. Beskopyl’nyi, Probabilistic models of mechanical units, Metody Management Kachestva,
no. 3, 1995, p. 9.

V. A. Bovkun (Ekaterinburg, Russia). On models leading to an infinite-
dimensional stochastic Cauchy problems. 3

Consider the heat propagation problem in a one-dimensional rod of length l
with due account of random thermal actions on the lateral surface and with isolated
end-points. Let u(x, t) be the rod temperature in section x ∈ [0; l] at time t � 0, and
let u(x, 0) = f(x) be the initial temperature distribution in the rod. When subject to
random thermal actions, the rod gains heat γ or −γ per unit length during unit time
interval with probability λ.

Taking into account the description of the physical model, the variation of heat
quantity in the section can be represented as a sum of two components: the deter-
ministic and the stochastic. In [1] it was shown that the stochastic component can
be described using an L2[0; l]-valued cylindric Wiener process {W (t), t � 0} (see, for
example, [2]). As a corollary, the following result holds.

Theorem 1. A stochastic Cauchy problem for the process of heat propagation in
the rod is described as follows:

cρS
(
u(t, x)− f(x)

)
= αS

∫ t

0

uxx(s, x) ds + γ
√
2λW (t), t ∈ [0;T ], x ∈ [0; l];

3This research was carried out with the financial support of the Programme of the President of
the Russian Federation for the Support of Leading Scientific Schools (grant NSh-9356.2016.1) and of
the Russian Academic Excellence Project (agreement 02.A03.21.0006 of August 27, 2013, between
the Ministry of Education and Science of the Russian Federation and Ural Federal University).
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here c is the specific heat capacity of the rod, ρ is the rod density, α is the heat-con-
duction coefficient, and S is the area of the section at x.

REFERENCES

[1] V. A. Bovkun, Construction of models in the form of stochastic Cauchy problems, Tr. Inst.
Mat. Mekh., 22 (2016), pp. 94–101 (in Russian).

[2] I. V. Melnikova, A. I. Filinkov, and U. A. Anufrieva, Abstract stochastic equations. I. Clas-
sical and generalized solutions, J. Math. Sci. (N.Y.), 111 (2002), pp. 3430–3475.

M. N. Bogacheva, L. B. Zelentsov (Rostov-on-Don, Russia). State
prognosis of investment construction projects based on stochastic
modeling.

In the process of implementation of an investment construction project (ICP) z,
the behavior of the system is described by the sequence of interrelated identically
distributed time series

Q̃z(ti) = Q̃1
z(ti) → Q̃2

z(ti) → · · · → Q̃n
z (ti), Q̃z(ti) = f(ti){Tz, Sz, Hz},

where Q̃z(ti) is the state vector of the ICP z at the discrete planning horizon ti;
f(ti){Tz, Sz, Hz} are the state characteristics of the ICP z at the discrete planning
horizon ti; Tz, Sz, and Hz are, respectively, the duration, net cost, and reliability of
the project.

As a local criterion of optimality of the management efficiency of a construction
project, we take the aggregate time loss level over a certain planning period. To
enhance the forecast precision, we propose to use the method of adaptive regression
modeling [1] and the pseudogradient method for renewal of coefficients of ICP models,
which together enable one to obtain models with high degree of approximation and
forecast to ensure timely adoption of management decisions.

REFERENCES

[1] S. G. Valeev, Regression Modeling in Data Processing, Nauka, Moscow, 1991 (in Russian).

E. V. Burnaev (Skolkovo Institute of Science and Technology; Institute for
Information Transmission Problems of the Russian Academy of Sciences (Kharkevich
Institute), Moscow), G. K. Golubev (Aix-Marseille Université, Institute for
Information Transmission Problems of the Russian Academy of Sciences (Kharkevich
Institute), Moscow). On one problem of multichannel signal detection. 4

We consider a statistical problem of detecting a signal with unknown energy in
a multichannel system, observed in a Gaussian noise. We assume that the signal
can appear in the kth channel with a known small prior probability πk. Using noisy
observations from all channels, we would like to detect whether the signal is presented
in one of the channels or we observe pure noise. We describe and compare statistical
properties of the maximum posterior probability test and optimal Bayes test. In
particular, for these tests we obtain limiting distributions of test statistics and define
sets of their undetectable signals.

It seems that one of the first mathematical works about Bayesian signal detection
for multichannel systems was [1], where a statistical model composed of n Rayleigh

4Supported by the Russian Science Foundation (grant 14-50-00150).
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channels was studied. The problem of Bayesian signal detection with known entropy
in Gaussian channels was considered in [2]. In this paper it was assumed that a signal
can appear in one of n channels with equal prior probabilities.

In the present paper, we investigate the situation where prior probabilities of
signals observed in different channels are different and the energy of a signal is un-
known and is a nuisance parameter. Since the statistical problem of signal detection in
a multichannel system is high-dimensional, its solution, as opposed to low-dimensional
problems, depends significantly on the available prior information about detectable
signals, and so the results provided in our paper differ significantly from those of the
papers listed above.

REFERENCES

[1] R. L. Dobrushin, A statistical problem arising in the theory of detection of signals in the
presence of noise in a multi-channel system and leading to stable distribution laws, Theory
Probab. Appl., 3 (1958), pp. 161–173.

[2] M. V. Burnashev and I. A. Begmatov, On a problem of signal detection leading to stable
distributions, Theory Probab. Appl., 35 (1991), pp. 556–560.

V. A. Vasiliev, T. V. Dogadova (Tomsk, Russia). Adaptive optimal
prediction of multivariate diffusion processes. 5

Consider a prediction problem of the multivariate diffusion-type process

dX(t) = ΛX(t) dt+ dW (t)

with unknown dynamics matrix Λ. The forecast X̂(t) for X(t) is built from observa-
tions (X(s))s�t−u, u > 0, on the basis of truncated estimates of the matrix Λ. The
truncated estimation method, which was proposed in [1] for discrete-time systems, is
suitable for evaluation of relation-type functionals from dependent samples of a fixed
volume with given accuracy in the sense of the metric L2m, m � 1.

We prove the optimality of the adaptive prediction procedure with risk function
of the form

RT =
A

T
Ee2T + T,

which is structurally similar to that considered in [2] for multivariate discrete-time
autoregression. Here, the parameter A represents the cost of aggregate prediction
error and

e2T =
1

T

∫ T

u

‖e(s)‖2 ds, e(s) = X̂(s)−X(s).

Such a choice of risk function enables one to optimize the volume of observations
depending on the requirements for the prediction quality by applying the quality
criterion RT → minT .

REFERENCES

[1] V. A. Vasiliev, A truncated estimation method with guaranteed accuracy, Ann. Inst. Statist.
Math., 66 (2014), pp. 141–163.

[2] M. I. Kusainov and V. A. Vasiliev, On optimal adaptive prediction of multivariate autore-
gression, Sequential Anal., 34 (2015), pp. 211–234.

5Supported by the Russian Science Foundation (grant 17-11-01049).
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G. A. Vlaskov, A. M. Mozhaev (Rostov-on-Don, Russia). Modeling of
stochastically convecting ionosphere.

Traditional models of distribution of electron concentration Ne in the F -region of
polar ionosphere are based on two determining factors: ionization q and the large-scale
electrical field of magnetospheric convection generating the transfer �v of ionospheric
plasma [1]. The continuity equation ∂Ne/∂t + �v∇Ne = q − βNe is solved, where
β is the recombination coefficient, and q is the ion formation function. These mod-
els are deterministic. However, as measurements show, the electrical field undergoes
substantial fluctuations, especially in the auroral zone. This means that the functions
involved in the equation are random (depending on the coordinates). Hence Ne is
a random function of coordinate and time (that is, a random field). Using the La-
grange approach and taking into account that the ionospheric plasma is “frozen into”
the geomagnetic field, we assume that the random component of the motion of tubes
of force is Brownian. Consideration of simplified problems subject to analytic solution
shows that the presence of stochastic fluctuations in the convection should result in
blurring of the mean values Ne [2]. The existence of solutions for equations of such
type was proved in [3, section 14.4]. At present this can hardly be solved analytically,
and so the numerical methods (and in particular, the Monte Carlo method) turn out
to be the most efficient. We found numerically the distribution of electronic density
in some characteristic zones of the upper polar ionosphere and obtained histograms,
charts of expectation, and variance for Ne.

REFERENCES

[1] M. G. Deminov, Earth ionosphere: Laws and mechanisms, in Electromagnetic and Plasma
Processes from Sun Interior to Earth Interior, IZMIRAN, Moscow, 2015, pp. 295–346.

[2] G. A. Vlaskov and A. M. Mozhaev, On modeling of stochastically convecting polar iono-
sphere, in Studies of High-Altitude Ionosphere, Izd-vo KNTs AN SSSR, Apatity, 1986, pp. 42–45.

[3] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics,
Theoret. Math. Phys., Springer, London, 2011.

T. A. Volosatova, A. G. Danekyants (Rostov-on-Don, Russia). Modeling
of quasilinear complex systems: The case of three probabilistic priorities
with unit sum. 6

This report continues [1], which was concerned with the model of an economic sys-
tem with three priorities in a case when the objective function reproduces competing
demands. We consider an optimization problem with the objective function

F = E[Fα1
1 Fα2

2 Fα3
3 ], Fi(x) =

( n∑
k=1

aikxk + bi

)
I

{ n∑
k=1

aikxi + bi > 0

}
,

where I{A} is the indicator function of a set A, and αi are the random variables
(priorities), P(αi > 0) > 0, P(αi < 1) > 0, i = 1, 2, 3, and α1 + α2 + α3 = 1.
We study only models in which there exist points of local and global maxima of the
function F . We let S denote the set of stationary points of the function F (x). If
we assume that S �= ∅, then the system of vectors {�a1,�a2,�a3} is linearly dependent.
Suppose that in this system there is a pair of linearly independent vectors �a1 and
�a2. A necessary condition for a global maximum is the existence of numbers c1 < 0,
c2 < 0 such that �a3 = c1�a1+c2�a2. In this report, we consider an extremal problem for

6Supported by the Russian Foundation for Basic Research (grant 16-01-00184-a).
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the function F (s, t) = E[(s+ b1)
α1(t+ b2)

α2(c1s+ c2t+ b3)
α3 ], provided this relation

is satisfied.
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Yu. E. Gliklikh (Voronezh, Russia). Stochastic equations and inclusions
with mean derivatives and their applications. 7

In this report we survey results on equations and inclusions with mean derivatives
obtained by the Voronezh school after the publication of the book [1].

The concept of the mean derivative was introduced by E. Nelson in the 1960s for
the purpose of his so-called stochastic mechanics (a variant of quantum mechanics;
see [2], [3], [4]). Later it was shown that equations with mean derivatives are also
natural in various branches of mathematical physics, economics, etc.

In [5] (see also [1]) on the basis of minor modification of Nelson’s ideas, in addition
to Nelson’s right-, left-derivatives, as well as symmetric and antisymmetric derivatives,
we introduced the mean derivative (which we called quadratic), which in principle
made it possible to find a process from its mean derivative, that is, jointly from
one of the classical Nelson’s derivatives and the quadratic derivative (by default, in
the Nelson’s approach the quadratic derivative always agrees with the unit operator
multiplied by a constant number, and hence he has never introduced it). In particular,
many equations with mean derivatives appearing in mathematical physics, economics,
etc. were proven to be solvable (see examples in [1]).

Differential inclusions with mean derivatives appear naturally in applications in
the same way as ordinary differential inclusions originate from ordinary differential
equations. For example, in equations with mean derivatives with control and feedback
at each point (t, x) of the extended phase space, one should consider all values of the
right-hand side for all possible control values. So, the right-hand side can be looked
upon as a set-valued mapping, the equation becoming an inclusion. We study inclusion
obtained in this way and consider an optimal control problem.

Of special importance are equations and inclusions with current velocities (sym-
metric mean derivatives), because these derivatives are natural physical analogues of
the standard velocity in physics. Such equations present the greatest challenge.

The main emphasis in this talk is given to the following questions: solvability of
equations and inclusions with mean derivatives (in particular, with current velocities);
existence of optimal solutions (in particular, for equations with control of geometrical
Brownian motion type and with current velocities); stochastic Leont’ev-type equa-
tions describing certain radio and electrical units with noises; second-order equations
appearing in mathematical physics, etc. A brief introduction to the theory of mean
derivatives is also given.
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A. A. Gushchin (Steklov Mathematical Institute of Russian Academy of
Sciences, Moscow, Russia). The joint law of terminal values of a nonnegative
submartingale and its compensator [1]. 8

We characterize a set W of possible joint laws of terminal values of a nonnega-
tive submartingale X of class (D), starting at 0, and a predictable increasing process
(compensator) from its Doob–Meyer decomposition. The set of possible values re-
mains the same under certain additional constraints on X , for example, under the
condition that X is an increasing process or a squared martingale. Special attention
is paid to extremal (in a certain sense) elements of the set W and to the corresponding
processes.

Namely, let μ be a probability measure on R+ with finite mean. We let Q(u),
u ∈ (0, 1), denote the lower quantile function for μ, that is,

Q(u) := inf{x : μ([0, x]) � u},
and define

Q∗(u) :=
∫ u

0

Q(t)

1− t
dt.

Then Q∗(u), u ∈ (0, 1), is also a lower quantile function of a probability measure
on R+ with the same mean as that for μ. We denote this measure by μ∗.

Let X = (Xt)t�0, X0 = 0, be a nonnegative submartingale of class (D) on
a stochastic basis (Ω,F , (Ft)t�0,P) with compensator A = (At)t�0. We assert that

(1) if Law(X∞) = μ, then

(1) Ef(A∞) �
∫ 1

0

f(Q∗(u)) du for any convex function f ;

(2) if a measure μ is given, then there exists a stochastic basis and a nonnegative
submartingale X on it with Law(X∞) = μ satisfying the above assumptions and such
that Law(A∞) = μ∗; that is, we have equality in (1) for any convex f ;

(3) if X satisfies the above assumptions, Law(X∞) = μ and Law(A∞) = μ∗, then

Law(X∞, A∞) = Law(Q(U), Q∗(U)),

where U is a random variable uniformly distributed on (0, 1).
In addition, we give a complete characterization of all such submartingales. In

particular, a necessary condition is that X lie in the class (Σ) [2].
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D. S. Donchev (Sofia, Bulgaria). Probability densities of a Wiener
process exit through one-sided boundaries.

In earlier studies (see [1]) we succeeded in characterizing the probability densities
of a Wiener process exit through any smooth boundaries in terms of a solution of
a parabolic partial second-order equation. It turns out that by using appropriate
substitutions and the Laplace transform, this equation can be reduced to a first-order
equation, which is explicitly solvable only in three cases: parabolic boundaries, as
well as boundaries involving the square root and rational functions. As an example,
we consider a boundary that has not been studied so far.

REFERENCES

[1] D. S. Donchev, An excursion characterization of the first hitting time of Brownian motion in
a smooth boundary, Random Oper. Stoch. Equ., 15 (2007), pp. 35–48.

A. D. Zhivaikina, A. A. Peresetskii (Moscow, Russia). Credit ratings of
Russian banks and revocation of bank licenses in 2012–2016.

We consider 11 credit ratings of Russian banks assigned either by internatio-
nal or Russian rating agencies in 2012–2016. Econometric models of these ratings are
constructed from open data: financial indicators of banks and macroeconomic indices.
Based on historical data on revocation of bank licenses, we construct econometric
models for the probability license revocation separately for each specific formulation
of revocation. These models enable us to analyze to what degree the Central Bank
employs ratings and to what degree rating agencies consider the possibility of license
revocation in a short-term outlook.

M. V. Zhitlukhin (Steklov Mathematical Institute of Russian Academy of
Sciences, Moscow, Russia). On new inequalities for the maximum of a fractal
Brownian motion [1]. 9

For a fractal Brownian motion BH with exponent H ∈ (0, 1/2), we put forward
new upper and lower estimates for the difference of the expectation of the maximum
of BH

t on the interval t ∈ [0, 1] and the maximum of BH
ti over a finite point set

ti = i/n, 0 � i � n. These results are used to improve the available estimates for the
expectation of the maximum of BH and to derive an upper estimate for the Pikands
constant. It is shown how the new estimates can be used to estimate the expectations
of a fractal Brownian motion.

REFERENCES

[1] K. Borovkov, Yu. Mishura, A. Novikov, and M. Zhitlukhin, New Bounds for Expected
Maxima of Fractional Brownian Motion, preprint, http://arxiv.org/abs/1612.07842, 2016.

Zadorozhnii V. G. (Voronezh, Russia). On moment functions of a solution
of differential equations multiplicatively perturbed by random noise.

We consider differential equations dx/dt = ε(t, ω)Ax + f(t, ω), x(0) = x0, which
are multiplicatively perturbed by a random noise. Here t is time, X is a finite-
dimensional space with the inner product 〈 · , · 〉, A : X → X is a linear operator,
x : R → X is the sought-after function, ε is a random process, f is a vector ran-
dom process, and x0 ∈ X is a random vector. The characteristic functional of the
processes ε, f is assumed to be known (see [1]): ψ(u, v) = E exp

{
i
∫
T
[ε(s, ω)u(s) +

9Supported by the Russian Science Foundation (grant 14-21-00162).
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〈f(t, ω), v(s)〉] ds}, where T ⊂ R is the interval where the problem is studied, and
E is the expectation with respect to the distribution function of the processes ε, f .

The search problem of moment function of solutions is reduced to nonrandom
differential equations involving traditional and variational derivatives.

We consider the auxiliary mapping

y(t, u, v) = E

(
x(t) exp

{
i

∫
T

[
ε(s, ω)u(s) + 〈f(s, ω), v(s)〉] ds}).

Note that y(t, 0, 0) = Ex(t).

Under the additional assumption that x0 is independent of the random processes
ε, f , we have the problem for y(t, u, v)

∂y(t, u, v)

∂t
= −iAδpy(t, u, v)

δu(t)
− i

δpψ(u, v)

δv(t)

with the initial condition

y(t0, u, v) = E(x0)ψ(u, v).

Here δpy(t, u, v)/δu(t) is the partial variational derivative [1]. The solution to the
resulting nonrandom Cauchy problem reads as

y(t, u, v) = ψ
(
uE − iAχ(t0, t), v

)
Ex0 − i

∫ t

t0

δpψ(uE − iAχ(s, t), v)

δv(s)
ds.

Here χ(s, t, τ) is the function of τ , which agrees with sign(τ − s) when τ lies in the
interval (min{s, t},max{s, t}), and vanishes for other values of τ ; E is the identity
operator.

In particular, for u = 0, v = 0 we get

Ex(t) = ψ
(−iAχ(0, t), 0)Ex0 − i

∫ t

0

δψ(−iAχ(s, t), 0)
δv(s)

ds.

If random processes ε, f are independent and are given by the characteristic
functionals ϕε(u), ϕf (v), then the formula for y(t, u, v) is more transparent:

y(t, u, v) = ϕε

(
uE − iAχ(t0, t)

)
Ex0 +

∫ t

t0

ϕε(uE − iAχ(s, t))Ef(s) ds.

REFERENCES

[1] V. G. Zadorozhnyi, Methods of Variational Analysis, RkHD, Moscow–Izhevsk, 2006 (in Rus-
sian).

A. A. Zamyatin (Moscow, Russia), Iasnogorodski R. (Paris, France). Reg-
ular quantum and random walks.

We consider the Hilbert space l2(N
2) over the field of complex numbers, where

N = {1, 2, . . .} take an orthonormal basis em,n, m,n � 1, and define the bounded
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linear self-adjoint operator (Hamiltonian) H = H0 + V : l2(N
2) → l2(N

2), which acts
on the basis vectors em,n as follows:

H0em,n = −λ(em+1,n + em−1,n + em,n+1 + em,n−1), n,m � 2,

H0e1,n = −λ(e2,n + e1,n+1 + e1,n−1), n � 2,

H0em,1 = −λ(em+1,1 + em−1,1 + em,2), m � 2,

H0e1,1 = −λ(e2,1 + e1,2),

V em,n = μ1δ(m− 1)em,n + μ1δ(n− 1)em,n + μδ(m− 1)δ(n− 1)em,n,

where λ, μ, μ1 ∈ R.
A quantum walk is defined as a dynamics of the form f(t) = exp(−iHt)f(0),

where f(t) =
∑∞

m,n=1 fm,n(t)em,n. The Hamiltonian H defines the system consisting
of three particles on the one-dimensional lattice Z+ such that one of them is fixed
at the point 0, while the other two particles are free: they interact with the fixed
particle when at least one of these two free particles hits the point 1. A quantum
walk is regular in the sense that the free particle never reaches the point 0, where the
fixed particle is located. The wave function f(t) defines the state of free particles: the
particles are at the points m, n at time t with probability pm,n(t) = |fm,n(t)|2. If an
eigenvalue of the operator H is taken as an initial state, then these probabilities are
independent of time.

The talk is concerned with the discrete spectrum of H . We find an explicit form
of its eigenvectors. The problem was solved by the method proposed earlier for finding
a stationary distribution of an ergodic random walk in a quadrant of the plane.

N. P. Krasiy (Rostov-on-Don, Russia). Optimization of quasilinear models
with several independent priorities. 10

We continue a study of the model proposed in [1]. Our purpose is to single
out conditions for existence of local and global maxima of the objective function
F (x) =

∏3
j=1 EF

αj

j , where αj ∈ [0; 1] are random variables (priorities) and

Fj(x) =

( n∑
i=1

aijxi + bj

)
I

{ n∑
i=1

aijxi + bj > 0

}
,

aij ∈ R, bj ∈ R, x = (x1, . . . , xn) ∈ Rn.

The values of priorities of competing structures are set by a referee who is interested
in the most efficient performance of the system on a large scale. It is shown that the
linear dependence of the vectors a (j) = (a1j , . . . , anj), j = 1, 2, 3, provides a necessary
condition for existence of a stationary point of the function F (x). Two cases are
possible: (1) the vectors lie on distinct lines, and (2) all vectors are collinear. In
the first case, we show that if there exists a local extremum point (t∗1, t

∗
2) of the

objective function F (t1, t2) = E(t1 + b1)
α1E(t2 + b2)

α2E(−c1t1 − c2t2 + b3)
α3 , where

c1 > 0 and c2 > 0 are some constants, then all intersection points of the hyperplanes
t∗1 =

∑n
i=1 ai1xi and t∗2 =

∑n
i=1 ai2xi are points of local maximums of the function

F (x). In the model corresponding to the second setting, there is no finite maximum if
the vectors a (j), j = 1, 2, 3, have the same direction. If among these vectors there are
some with opposite directions, then there exists a unique point t∗ such that all points
of the hyperplane t∗ =

∑n
i=1 ai3xi are points of global maximum of the function F (x).

10Supported by the Russian Foundation for Basic Research (grant 16-01-00184-a).
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O. E. Kudryavtsev (Rostov-on-Don, Russia). Numerical methods for
liquidity estimation in models admitting jumps. 11

The liquidity risk is of key significance for financial markets. We define the
liquidity risk as the inability to close a position at an appropriate price. Especially, its
role grows at sharp movements of financial asset prices, which are observed on most
trading platforms. Practitioners use Lévy processes for modeling jumps in prices
at financial markets. The liquidity risk has two components related to the value
of immediate closing position and the value of waiting for a possibility to complete
a transaction. Analyzing the second component of illiquidity, Longstaff [1] considered
an investor with a single security in a portfolio who is restricted in ability to sell
his/her asset.

Given the absence of trading restrictions, the investor could sell the asset by the
maximal price reached during the given period. The expected difference between the
maximal price for the period and the price at the end of the period gives an upper
bound for the value of illiquidity and can be interpreted as a European floating strike
lookback put with an initial asset price S = ex:

V (T, x) = E
[
e−rT (eXT − eXT )

∣∣ X0 = x
]
,

where Xt is a Levy process starting at x, XT is a supremum process, T is the time
to option expiration, and r is the riskless rate.

A repurchase agreement (repo) can serve as an example of such trading restrictions
such that a participant in a financial market actually takes a loan using the assets
as collateral by means of selling them with an obligation to repurchase the securities
at the end of the loan term at a pre-agreed price. Since the ownership of the assets
is transferred from the seller to the buyer during the period of the agreement, the
securities become illiquid for the seller. Repo operations, by their character, are
short-term and have a term of less than 1 year. At the Moscow Exchange, agreements
indicated can last for 1, 7, or 14 days.

Assessing a liquidity risk before a repo transaction, an investor should dynam-
ically monitor the risk, taking into account variation of the price of the asset used
as collateral. If at time moment T1 the maximal price of the asset reaches a value
H = eh under current price S = ex, then the value illiquidity can be estimated via
the price of a seasoned European floating strike lookback put:

V (T1, T2;x, h) = ET1

[
e−r(T2−T1)(eXT2 − eXT2 )

∣∣ XT1 = x, XT1 = h
]
.

Setting T = T2 − T1, we reduce solving the problem to computing the function

V (T, x) = Ex
[
e−rT (emax{XT ,h} − eXT )

∣∣ X0 = x
]

= Ex
[
e−rT (eXT − eXT )

∣∣ X0 = x
]
+Ex

[
e−rT (H − eXT )1{XT<h}

∣∣ X0 = x
]
.

The expectations obtained can be efficiently computed by using the Wiener–Hopf
method and approximate factorization formulas obtained in [2].

11Supported by the Russian Fund for Basic Research (grant 18-01-00910).
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D. I. Lisovskii (Steklov Mathematical Institute of Russian Academy of
Sciences, Moscow, Russia). On a distribution of the first hits of a random
boundary by a Brownian motion. 12

We are concerned with a model of Brownian motion with a change point ; namely,
consider the process Xt = x + μ(t − θ)+ + σBt, where μ, x ∈ R, σ > 0, (Bt)t�0 is
a standard Wiener process, and θ ∼ Exp(λ) is an exponentially distributed random
variable, which is interpreted as an unobservable moment of occurrence of a change
point. It is assumed that a given Brownian motion (Bt)t�0 and a random variable θ
are independent. For the process Xt, we define in the natural way the first hits of
a given level:

τθa = inf{t � 0: Xt � a}, σθ
b = {t � 0: Xt � b};

here a > x, b < x; with the help of some new notation, these instances can be
rewritten in an equivalent way as

τθã = inf{t � 0: Bt � ã− μ̃(t− θ)+}, σθ
b̃
= {t � 0: Bt � b̃− μ̃(t− θ)+};

here ã > 0, b̃ < 0, and μ̃ ∈ R. They can be interpreted as the first hits of a random
boundary of a special form by the Brownian motion Bt. We are also concerned with
the stopping time γθa,b = τθa∧σθ

b , which is the first exit time by the processXt from the

interval [b, a]. We note that the above random variables τθa , σ
θ
b , and γ

θ
a,b extend the

well-known first hit times of given levels by a Brownian motion (see [1] and [2]). In this
talk we put forward new Laplace transforms, and explicit expressions for densities,
and expectations of the above stopping times.

REFERENCES

[1] A. N. Shiryaev, On Martingale Methods in the Boundary Crossing Problems for Brownian
Motion, Sovrem. Probl. Mat. 8, MIAN, Moscow, 2007.

[2] A. N. Borodin and P. Salminen, Handbook of Brownian Motion—Facts and Formulae, 2nd
ed., Probab. Appl., Birkhäuser Verlag, Basel, 2002.

A. A. Lykov, V. A. Malyshev (Moscow, Russia). How statistical is non-
equilibrium statistical physics?

Consider a system of N particles on the line with interaction

U =
∑

1�i<j�N

V (|xj − xi|),

where the potential of interaction between particles reads as

V (x) =
ω2

2

⎧⎪⎨
⎪⎩
φ(x), 0 < x � a− a1,

(x− a)2, a− a1 < x � a+ a1,

const, x > a+ a1

12Supported by the Russian Science Foundation (grant no. 15-11-30042).
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for an arbitrary smooth function φ(x) and a = 1/N , a1 = r/N > 0, r < 1, ω = ω′N >
0. The initial conditions are as follows:

xk+1(0)− xk(0) =
1

N
X

(
k

N

)
> 0, ẋk+1(0)− ẋk(0) =

1

N
V

(
k

N

)
,

x1(0) = 0, ẋ1(0) = v, X(0) = X(1) = 1, V (0) = V (1) = 0

for some v ∈ R and X,V ∈ C4([0, 1]).

Theorem. Let t � 0 and k = 1, . . . , N − 1. Then

1− γ

N
� xk+1(t)− xk(t) �

1 + γ

N
,

where

γ = 2α+
βN

ω
= 2α+

β

ω′ , α =

∫ 1

0

|X ′′(y)| dy, β =

∫ 1

0

|V ′′(y)| dy,

which means that there is no collision between particles.

Making N → ∞, we get a regular continuum system of particles [1] with paths
y(t, x), velocities u(t, y), and initial conditions y(0, x) = x, u(0, y) = v(x).

From the no-collision condition, we derive a system of three equations [2]: the
continuity equation, the Euler equation, and the state equation (a relation between
density ρ and pressure p):

ρt + (uρ)y = 0, ut + uuy = −1

ρ
py, p = − (ω′)2

ρ
+ (ω′)2.

In addition, we survey three “stochastic” methods of derivation based on the stochas-
tic dynamics, kinetic Boltzmann equations, or the chain of BBGKY equations for
correction functions. We discuss heuristic and unproved moments in these methods
of derivation.

REFERENCES

[1] A. A. Lykov, V. A. Malyshev, and V. N. Chubarikov, Regular continuum systems of point
particles. I: Systems without interaction, Chebyshevskii Sb., 17 (2016), pp. 148–165.

[2] A. A. Lykov and V. A. Malyshev, From N-body problem to Euler equations, Russ. J. Math.
Phys., 24 (2017), pp. 79–95.

G. V. Martynov (Institute for Information Transmission Problems of the
Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia). Goodness
test for the Gaussianity conjecture of a random process [1]. 13

Let (X,B, μ) be a probability space, where X is a real separable Hilbert space,
and let B be a Borel σ-algebra on X . We test the conjecture that the measure μ is
equivalent to a Gaussian measure with zero expectation and a trace class covariation
operator K. As alternatives, we consider all possible measures, including Gaussian
ones. Let Xi, i = 1, . . . , n, be observations of X , and let (Xi1, Xi2, . . . ), i = 1, . . . , n,
be their decompositions in the basis corresponding to the operator K. Let αi, i =
1, 2, . . . , be the characteristic numbers of the operator K. Consider Tij = G(αj Xij),

13Supported by the Russian Science Foundation (grant 14-50-00150).
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i = 1, . . . , n, j = 1, 2, . . . , where G is the function of the standard one-dimensional
normal distribution. We replace each observation Xi by the vector Ti = (Ti1, Ti2, . . . )
lying in [0, 1]∞ and having with H0 a uniform distribution on [0, 1]∞. Let the distri-
bution function on [0, 1]∞ be defined by F (t) =

∏∞
i=1 t

ri
i , where t = (t1, t2, . . . ) and

r1, r2, . . . is a sequence decreasing from 1 to 0. In a similar way, we define the em-
piric distribution function Fn(t) = n−1

∑n
i=1

∏∞
j=1 I{Tij < trij }. A conjecture can be

tested with the help of the Cramér–Mises statistics ω2
n = n

∫
[0,1]∞(Fn(t) − F (t))2 dt,

which can be evaluated by the Monte Carlo method. Using Prokhorov’s theorem, it
is proved that the empirical process

√
n (Fn(t) − F (t)), t ∈ [0, 1]∞, is weakly con-

vergent in L2([0, 1]
∞) under some conditions on {ri} to a Gaussian process with the

covariation function

C(s, t) =

∞∏
i=1

min(srii , t
ri
i )−

∞∏
i=1

srii t
ri
i , s, t ∈ [0, 1]∞.

We propose a method for evaluating precise eigenvalues and functions for C(s, t). We
calculate a table of limit distribution of the statistics ω2

n for the infinite-dimensional

Hilbert setting and with ri = i−3(1−i−1/2). So, P{ω2
n � 0.9} = 0.16450. The limit

distribution is independent of K, but it depends on the choice of {ri} and on the
dimension of the Hilbert space. The above method can be applied, for example, for
testing that a random process is Wiener or for testing the uniformity of distribution
in a unit cube of large dimension.

REFERENCES

[1] G. Martynov, A Cramér–von Mises test for Gaussian processes, in Mathematical Statistics
and Limit Theorems, Springer, Cham, 2015, pp. 209–229.

L. E. Melkumova (Samara, Russia). Comparison regression analysis
results for the Newton–Kantorovich, Ridge, and LASSO methods. 14

The problem of evaluating the coefficients B of a linear regression from the initial
data W, V using the Newton–Kantorovich, Ridge, and LASSO methods (see [1]) can
be formulated as follows:

1) ‖V −WB‖2 �−→ min,

2) ‖V −WB‖2 + λ‖B‖2 �−→ min,

3) ‖V −WB‖2 + λ‖B‖1 �−→ min .

Wine Quality (UCI Machine Learning Repository) data were analyzed for red
wine (1599 observations) and white wine (4898 observations); see [2]. Eleven wine
product properties are taken as predictors, and qualitative assessments (from 0 to 10)
are taken as responses.

For the analysis of multicollinearity, we evaluate the variance increase factors of
predictors VIFj , j = 1, . . . , 11. The maximal values of VIF are as follows: 7.125
for red wine, and 28.233 for white wine. A cross-validation method is used to find
optimal values of regularization parameters λ for Ridge and LASSO, which are used
for construction of regression models. The data for each kind of wine are randomly

14This research was carried out with the financial support of the Russian Foundation for Basic
Research (grants 16-41-630-676 and 16-01-00184-a).
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partitioned into the learning and control samples. For all kinds of regression, models
are constructed from learning samples, and errors (the residual sum of squares) are
calculated from control samples. Using the LASSO method allows us to reduce the
number of predictors for both white and red wines. It is found that the RSS quantity
for control samples for MNK is larger than for the Ridge and LASSO methods.

REFERENCES

[1] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning.
With Applications in R, Springer Texts Statist. 103, Springer, New York, 2013.

[2] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, Modeling wine preferences by
data mining from physicochemical properties, Decision Support Systems, 47 (2009), pp. 547–553.

A. A. Muromskaya (Moscow, Russia). Optimal reinsurance for a company
making combination insurance contracts.

Consider operations of an insurance company which makes insurance contracts
covering directly k � 2 risks. We assume that each of such risks can be given by
the company for a reinsurance of arbitrary type and at each time t � 0 the insurance
company has the ability to choose parameters dit of reinsurance of the ith risk in accor-

dance with the capital value Xd
t . The process dt = (d1t , . . . , d

k
t ), where d

i
t = di(Xd

t )
are measurable functions of the company capital, define the reinsurance strategy.
The principal task of the company is to search for an optimal strategy of reinsurance
that maximizes the nonruin probability. In accordance with this task, we obtain the
Hamilton–Jacobi–Bellman equation and prove the existence and uniqueness of the so-
lution to this equation. We also prove the existence of an optimal reinsurance strategy
such that the nonruin probability of the company is maximal. Our results extend and
continue the studies on the search of optimal reinsurance strategies in models with a
fixed type of reinsurance contract and one risk within one insurance contract (see [1]
and [2]). Numerical examples are given to illustrate the above theoretical results in
the case of independent risks and in the case of dependent risks, and joint distribution
for these risks is constructed using a copula.

REFERENCES

[1] H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J.,
2001 (2001), pp. 55–68.

[2] A. N. Gromov, Reinsurance optimal strategy of a loss excess, Moscow Univ. Math. Bull., 66
(2011), pp. 153–157.

F. S. Nasyrov (Ufa, Russia). Representation of solutions of wave
equations as mathematical expectations.

We show that solutions to both the Cauchy problem for oscillation of an un-
bounded string and the first, second, and third boundary-value problems for the
oscillation equation of a bounded string can be represented as mathematical expec-
tations. Additionally, as distinct from [1], which employed fairly involved machinery
for this purpose (in particular, a generalized random process which was a limit of
some sequence of random walks was constructed), we show that the solutions can
be represented as mathematical expectations of deterministic functions of a random
variable with uniform distribution on the interval.

Some results can be extended to the case of wave equations of dimensions n = 2, 3.
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REFERENCES

[1] N. V. Smorodina and M. M. Faddeev, The probabilistic approach to the solution of the string
wave equation, J. Math. Sci. (N.Y.), 199 (2014), pp. 228–235.

I. V. Pavlov (Rostov-on-Don, Russia). Interpolating martingale measures
and Haar extensions of financial markets. 15

In this talk we give a survey of recent results on finding interpolating martingale
measures, as well as new results obtained by the author and his research team. To
avoid technicalities, we consider only one-step processes that assume at the final time
only a countable number of values (possibly repeated). The initial values of these
processes are always constant.

We let Z = (Zn,Fn)
1
n=0 denote a one-step process, where F0 = {Ω,∅}, F1 is

generated by the partition of Ω into a countable number of atoms Bi
k (k ∈ N =

{1, 2, . . .}, 1 � i < mk + 1, 1 � mk � ∞), Z0 = a, Z1(B
i
k) = bk (bk are distinct

real numbers, bk �= a for any k ∈ N). We assume that infk bk < a < supk bk.
The set of martingale measures P on {Ω,F1} such that pik := P (Bi

k) > 0 and bl �=∑
J bkp

i
k/
∑

J p
i
k, for all l(1 � l < ∞) and all subsets J ⊂ {(k, i), 1 � k < ∞, 1 �

i < mk + 1} with finite complement Jc is denoted by P; this set is called the set of
special interpolating martingale measures.

We first assume that the σ-algebra F1 is finite. This is equivalent to the inequal-
ities r <∞ and mk <∞ for all 0 � k � r. It is easily seen that a necessary condition
that P be nonempty is that m1 = · · · = mr = 1 and that a be distinct from any of
the numbers b1, . . . , br. Under these conditions P �= ∅ (see [1], [2]).

We now assume that the σ-algebra F1 is infinite, but r <∞. It can be assumed
without loss of generality that b1 < · · · < br. Clearly, if there exists a unique index k,
0 � k � r, such that mk = ∞, then P = ∅. We assume that there exist at least two
indexes k and k′ such that mk = ∞ and mk′ = ∞. Then (1) if r = 2 or r = 3, then
P �= ∅ (see [3]); (2) if r = 4, mk = ∞ (k = 1, 2, 3, 4), and b1 < a < b2 or b3 < a < b4,
then P �= ∅ (see [4]); (3) if r � 4 and if b1, . . . , br are rational, then P �= ∅ (see [3]);
(4) if b1 < a < b2 < b3 < b4 < b5 < · · · and if bk − bk−1 � bk−1, for any k � 2, then
P �= ∅.

In this talk, for r = 4, we give other sufficient conditions for the set P to be
nonempty. The following theorem is also new.

Theorem. If among the numbers a, b1, b2, . . . only one number is irrational (and
the other numbers are rational), then P �= ∅.

It is worth noting that Shamraeva recently proved that under condition (4) there
exist martingale measures satisfying much more stringent interpolating condition than
the membership to the set P.

In this talk, we give a detailed description of the extension scheme for complet-
ing incomplete arbitrage-free finance markets with the use of martingale measures
from P.

REFERENCES

[1] M. N. Bogacheva and I. V. Pavlov, Haar extensions of arbitrage-free financial markets to
markets that are complete and arbitrage-free, Russian Math. Surveys, 57 (2002), pp. 581–583.

15Supported by the Russian Foundation for Basic Research (grant 16-01-00184-a).
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[2] I. V. Pavlov, I. V. Tsvetkova, and V. V. Shamraeva, Some results on martingale measures
relating to the barycenter noncoincidence condition in one period models of financial markets,
Vestnik RGUPS, no. 3 (47), 2012, pp. 174–181.

[3] I. V. Pavlov, V. V. Shamraeva, and I. V. Tsvetkova, On the existence of martingale mea-
sures satisfying the weakened condition of noncoincidence of barycenters in the case of countable
probability space, Theory Probab. Appl., 61 (2017), pp. 167–175.

[4] V. V. Shamraeva, Inequalities that ensure the fulfillment of interpolation properties of mar-
tingale measures, Abstracts of the International Conference on Stochastic Methods, Theory
Probab. Appl., 61 (2017), p. 532.

A. Yu. Perevaryukha (St. Petersburg, Russia). Modeling the phenomenon
of collapse of the exploited fish population with stochastic uncertainty. 16

We propose a dynamic model with a stochastic component for a specific scenario
of collapse: a special case of the rapid degradation of the exploited population of
large fish. This scenario has practical importance, because prior to the collapse of
bioresources their state was estimated as favorable for fishing. [1]. The stochastic
supplement in the model is necessary to describe the unexpected possibility of recov-
ering a small population, as in the case of a whitefish Coregonus clupeaformis in Lake
Ontario. We applied a discrete–continuous model of “stock⇔recruitment” type based
on the differential equations of loss of fish populations with a trajectory in iterative
form xn+1 = ψ(xn), where ψ(x) = N(T ) is a solution of the Cauchy problem at
the interval of juvenile vulnerability t ∈ [0, T ] with initial conditions N(0) = λxn−1,
depending on the state of the stock, and λ is the average fertility of fish. Earlier, the
author of [2] described the effect of the threshold state of the number of fish U1 in
the form of a repeller singular point: limn→∞ ψn(x0) = U0, U0 < ε, for all x0 < U1.
The attractor for a state x0 > U1 of a population is a cycle without a cascade of
bifurcations: p = 2I , I → ∞. We propose a hypothesis that successful reproduc-
tion of a small group of fish is probabilistic; then there is a range of values, rather
than a single value, of the state of a small group U1 ∈ Ωx, where the reproductive
process of the fish is caused by random influences. Let the probability of an event
of replenishment ψ(x0) > x0, x0 ∈ Ω, and the probability gradually decreases with
further depletion xn → 0 + ε. In the computing model there is a trigger functional:
Θ(N(0)) = [1 + exp(−κN(0)2)], limN(0)→∞ Θ(N(0)) = 1, which is supplemented by

a random variable γ with an exponential distribution law: Θ̃ = Θ(N(0))× γ. So we
successfully solve the problem of local perturbation in the equation for the reduction
of the number of the first stage of development of young fish:

Ṅ = −N(t)
(
αw(t)N(t) + βΘ̃N(t)

)
, t ∈ [0, τ ], τ < T.

We take into account the speed of dimensional development of the individuals of
a generation: ẇ = v(N−2/3(t)), w(0) = ŵ. For the senior development stage the
delayed regulation is introduced in the form of the right-hand side of f2:

Ṅ = f2(N(t− ς), w(τ)), t ∈ [τ, T ], ς < τ.

The method of inclusion in the model Θ̃ allows us to describe the stochastic behavior
of the trajectory in the narrow range of the state of the stock. xn ∈ U1 ± Ω(γ).
The new model in computational experiments demonstrates a slow recovery of the
population while maintaining the number of reproductively isolated groups of large
fish.

16Supported by the Russian Foundation for Basic Research (grant 17-07-00125), developed by
SPIIRAS.
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E. A. Pechersky (Moscow, Russia). Markov dynamics of configurations
of two types of particles [1], [2]. 17

We are concerned with the Markov dynamics of a Jackson network with two
types of queries forming queues at service nodes. Service nodes form d-dimensional
torus Td. One type of query is called standard, and the other type of query is called
special. Standard queries (irrespective of the special ones) form a conventional Jackson
network. In the system, there is a finite number of special queries that are conserved
in the course of dynamics. Their dynamics depends on the configuration of standard
queries. So, the state space of the Markov process describing the system dynamics

is the set of configurations X = NTd × NTd

. A state is a pair (n, y) ∈ X , where

n = (ni, i ∈ Td), y = (yi, i ∈ Td) is the number of standard and special orders,
respectively. Let L be the total number of special orders, when L =

∑
i∈Td yi. The

dynamics of standard orders depends on the intensities λi, i ∈ Td, of arrival of
standard queries at each node i, the intensities μi of escaping the system from the
node i, and the jump intensities βij of standard queries. The dynamics of special
queries depends on the jump intensities τij . The following theorem holds under some
symmetry conditions and constraints on the dynamics of special queries, which depend
on the configuration of standard queries.

Theorem. There exist constants γi > 0, i ∈ Td, such that the standard distribu-
tion π of the Markov dynamic of requests on X is as follows:

π(n, y) =
∏
i

(
λi
μi

)ni

γyi

i .

Under these conditions there is no detailed balance. However, there are relations,
which we call a balance of three states.

REFERENCES

[1] S. Trimper, U. C. Täuber, and G. M. Schütz, Reaction-Controlled Diffusion, preprint,
http://arxiv.org/abs/cond-mat/0001387, 2000.

[2] M. Gannon, E. Pechersky, Y. Suhov, and A. Yambartsev, Random walks in a queueing
network environment, J. Appl. Probab., 53 (2016), pp. 448–462.

A. B. Piunovskiy (Liverpool, UK). On the strategies in controlled jump
Markov processes. 18

In the theory of controlled jump processes, there are two main areas: semi-Markov
decision processes (SMDP) and continuous-timeMarkov decision processes (CTMDP).

Suppose X and A are the standard Borel spaces of states and actions; qx(a) is the
jump rate from the state x ∈ X under action a ∈ A, and c(x, a) is the corresponding
cost rate. Let x ∈ X be the initial state.

17Joint work with G. Schütz and A. A. Yambartsev.
18The author is thankful to IMA (UK) for support.
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In the framework of SMDP, a decision maker can choose action a ∈ A; e.g., in
the form of the feedback control a = ϕ(x), this action remaining constant on the
interval (0,Θ1], where the state x is constant. The distribution of Θ1 is exponential,
P(Θ1 � t | x) = 1− e−qx(ϕ(x))t, and the cost rate is c(x, ϕ(x)).

In the more general case, the decision maker chooses a standard Borel space Ξ,
simulates the random element ξ ∈ Ξ according to one or another stochastic kernel
p(dξ|x), and applies the time-dependent actions A(t) = ϕ(x, ξ, t). If Ξ = A and
ϕ(x, a, t) = a, then this is just the randomized version of the feedback control de-
scribed above. Such control strategies, as defined by {Ξ, p, ϕ}, are realizable in the
sense that there exists a random process A(u, ω̃) such that

∀ qx(a) P(Θ1 � t | x) =
∫
Ω̃

[
1− exp

{
−
∫
(0,t]

qx(A(u, ω̃))du

}]
P̃(dω̃),

and for any c(x, a) the actual expected cost rate equals

∫
Ω̃

c(x,A(t, ω̃)) P̃(dω̃).

Such control strategies are called ξ-strategies. Some versions thereof were studied
in the 1960–1970s by Howard, Bather, Yushkevich, Feinberg, Federgruen, Varaiya,
and others.

In the framework of CTMDP, the decision maker chooses the stochastic kernel
π(da|x, t), resulting in the expression

P(Θ1 � t | x) = 1− exp

{
−
∫
(0,t]

∫
A

qx(a)π(da|x, u) du
}
,

and the actual expected cost rate is
∫
A
c(x, a)π(da|x, t).

Such control strategies are called π-strategies. They were studied, starting from
the 1980s, by Kitaev, Feinberg, Guo, Prieto-Rumeau, Hernández-Lerma, and others.
π-strategies are not realizable, unless the kernel π is degenerate.

The first issue here is that ξ-strategies and π-strategies have (almost) no overlap.
Because of that, SMDP and CTMDP were developed in parallel. In the current
talk, the general class of π-ξ-strategies is proposed, which makes possible the unified
description of all the models of controlled jump Markov processes.

Further, one has to understand which classes of strategies are sufficient for solving
optimization problems, and which classes are realizable. It appears that a convenient
class of realizable and sufficient strategies is formed by the so-called Poisson-related
strategies.

One can find details in [1], [2].

REFERENCES

[1] A. Piunovskiy, Randomized and relaxed strategies in continuous-time Markov decision pro-
cesses, SIAM J. Control Optim., 53 (2015), pp. 3503–3533.

[2] A. Piunovskiy, Realizable strategies in continuous-time Markov decision processes, SIAM J.
Control. Optim., 56 (2018), pp. 473–495.
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E. L. Presman (Moscow, Russia). Stock control model with price
depending on a continuous-time finite-state Markov process. 19

There is a vendor which needs to consume some intermediate product (goods) at a
constant rate. If the product price depends on the state of a continuous-time Markov
chain (the model proposed by Sonin), then it is expedient to arrange a warehouse and
purchase goods both continuously and discretely. The storage cost is proportional
to quantity of goods at the warehouse. The problem is to manage the warehouse
activity in order to minimize cost of purchase and storage (discounted or limited per
time unit).

Sonin and Hill [1] considered expenses which are limiting per unit time and as-
sumed that, for each state, there is a threshold such that if the quantity of goods
at the warehouse exceeds this threshold, then no procurement is required; otherwise
a one time buy should be arranged to reach this threshold and then performed pro-
curements at unit rate in order that the stock is equal to the threshold value until
the next jump of the Markov process. In [1], for the case of two states and some sub-
cases of three states, optimal threshold values were obtained in the class of threshold
strategies.

Following [2] and [3], we examine the optimality in the class of all coordinated
(not predictable!) controls and first consider discounted costs, and then (passing to
the limit), consider the limit costs per time unit. We prove the optimality of threshold
strategies and put forward an algorithm of successive construction of optimal thresh-
olds. This algorithm is based on the fact that instead of evaluating the functionals
corresponding to algorithm threshold strategies, we rather study their derivatives,
and instead of smooth joints, we invoke convexity arguments, which are shown to be
equivalent to twice smooth joints.

REFERENCES

[1] J. Hill and I. Sonin, An Inventory Optimization Model with Markov-Modulated Commodity
Prices, preprint.

[2] E. Presman and S. P. Sethi, Inventory models with continuous and Poisson demands and
discounted and average costs, Production and Operations Management, 15 (2006), pp. 279–293.

[3] E. Presman, S. Sethi, and Q. Zhang, Optimal feedback production planning in a stochastic
N-machine flowshop, Automatica, 31 (1995), pp. 1325–1332.

E. A. Pchelintsev (Tomsk, Russia). Adaptive estimation for a
nonparametric regression with conditionally Gaussian Lévy noises. 20

We consider a problem of adaptive robust estimation for an unknown regression
function S( · ) based on the observations of the process, which is described by the
stochastic differential equation

dyt = S(t) dt+ dξt, 0 � t � n,

where (ξt)0�t�n is an unobserved noise modeled by a conditionally Gaussian Lévy
process. For estimating the function S, a model selection procedure was proposed
in [1] on the basis of weighted least squares estimates, which provided an adaptive so-
lution to the nonparametric estimation problem by means of a nonasymptotic sharp
oracle inequality for the quadratic risk. Since a nonparametric estimation usually
has low quality, the problem of its improvement is relevant. Improved estimation

19Supported by the Russian Science Foundation (grant 15-06-03723).
20Supported by the Russian Science Foundation (grant 17-11-01049).
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for regression models in continuous time with pulse noise was made possible by the
results of [2], [3]. In the present study, we construct an adaptive model selection pro-
cedure for estimating the function S on the basis of weighted improved least squares
estimates with special weight coefficients that ensure asymptotic efficiency of the pro-
posed estimate. Using the proposed procedure allows us to improve the quality of
nonasymptotic estimation in nonparametric regression models.

REFERENCES

[1] V. Konev and S. Pergamenshchikov, Efficient robust nonparametric estimation in a semi-
martingale regression model, Ann. Inst. H. Poincaré Probab. Stat., 48 (2012), pp. 1217–1244.

[2] E. Pchelintsev, Improved estimation in a non-Gaussian parametric regression, Stat. Inference
Stoch. Process., 16 (2013), pp. 15–28.

[3] V. V. Konev, S. M. Pergamenshchikov, and E. A. Pchelintsev, Estimation of a regression
with the pulse type noise from discrete data, Theory Probab. Appl., 58 (2014), pp. 442–457.

V. V. Rodochenko, O. E. Kudryavtsev (Rostov-on-Don, Russia). Pricing
barrier options in stochastic volatility models admitting jumps by using a
fast Wiener–Hopf factorization method. 21

We develop a new method allowing fast and accurate pricing barrier options for a
wide class of stochastic volatility models admitting jumps. As an example we consider
a down-and-out barrier put in the Bates model [1]. Choosing a suitable substitution
for eliminating a correlation between the price and variance processes (analogously
to the approach in [2]) and applying Carr’s randomization procedure, it is possible to
reduce computation of the arbitrage-free price of the option to solving recurrently a
family of one-dimensional problems corresponding to vertices of a binomial tree.

Approximating the process of variance CIR by Markov chain, for each vertex
we obtain a pair of problems with fixed variance, which can be solved by using the
Wiener–Hopf factorization method. Since closed form expressions for the factors are
not available, we apply approximate formulas obtained in the paper [3], admitting an
efficient implementation by using the fast Fourier transform. The results of numerical
experiments demonstrate fast convergence and accuracy of the method obtained.

REFERENCES

[1] D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche
mark options, Rev. Financial Stud., 9 (1996), pp. 69–107.

[2] M. Briani, L. Caramellino, and A. Zanette, A hybrid approach for the implementation of
the Heston model, IMA J. Manag. Math., 28 (2017), pp. 467–500.

[3] O. Kudryavtsev, Advantages of the Laplace transform approach in pricing first touch digital
options in Lévy-driven models, Bol. Soc. Mat. Mex. (3), 22 (2016), pp. 711–731.

D. B. Rokhlin (Southern Federal University, Rostov-on-Don, Russia). Central
limit theorem under uncertainty and the problem of prediction with
expert strategies. 22

In the first part of this talk, we consider the description of the limits

(1) L := lim
n→∞ sup

An−1
0 ∈An−1

0

f

(
n−1/2

n−1∑
j=0

Ajξj+1

)
.

21Supported by the Russian Fund for Basic Research (grant 18-01-00910).
22Supported by the Russian Science Foundation (project 17-19-01038).
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Typically, (ξj)
∞
j=0 is a sequence of independent identically distributed d-dimensional

random variables with zero mean and identity covariance matrix, or a sequence of
independent one-dimensional zero mean random variables satisfying the Lindeberg
condition. In the first case, An−1

0 is the class of σ(ξ0, . . . , ξn−1)-adapted sequences of
d× d matrices, belonging to a compact set Λ. In the second case, An−1

0 is the class of
adapted sequences with values in intervals [aj , aj ] such that their bounds satisfy some
stabilization conditions as j → ∞. The function f is assumed to be continuous and
bounded. The sequences Aj describe the uncertainty of the model. They also can be
regarded as opponent strategies under the game interpretation of the problem.

In [1], [2] it was proved that the limit (1) can be expressed in terms of the viscosity
solution of the G-heat equation: L = v(0, 0), where

−vt(t, x)− 1

2
sup
A∈Λ

Tr
(
AAT vxx(t, x)

)
= 0, (t, x) ∈ [0, 1)×Rd;

v(1, x) = f(x), x ∈ Rd.

A similar result was obtained by S. Peng in 2007 in the framework of his sublinear
expectations theory. In this context, by the definition we have u(0, 0) = Êf(Y ), where

Y is a G-normally distributed random variable and Ê is the sublinear expectation
functional.

In the second part of this talk we consider the problem of online prediction of
individual sequences. The aim of the prediction is to make the cumulative error Ln

after n rounds as close as possible to the cumulative error min1�i�N Li
n of the best

expert from the given finite class. From the theory of online learning it is well known
that typically the cumulative regret Rn = Ln −min1�i�N Li

n satisfies the inequality
Rn � C

√
n. A quite precise upper bound of Rn in the case of randomized predictions

was given in 2010 by the sequential Rademacher complexity of Rakhlin, Sridharan,
and Tewari. In [3] it is mentioned that the asymptotic behavior of this quantity as
n → ∞ is determined by the limit of the form (1). In the language of sublinear
expectations theory this limit coincides with the expected value of the largest order
statistics of a multidimensional G-normal random variable.

Similar structures appear after taking the limits in the recurrence relations for
the value function of a sequential prediction game. Passing to the limit as n→ ∞ one
gets a nonlinear parabolic partial differential equation of Isaacs–Bellman type. Its
smooth supersolutions of a special form correspond to the potential functions (known
in online learning theory) and induce algorithms of weighting of expert opinions.

REFERENCES

[1] D. B. Rokhlin, Central limit theorem under uncertain linear transformations, Statist. Probab.
Lett., 107 (2015), pp. 191–198.

[2] D. B. Rokhlin, Central limit theorem under variance uncertainty, Electron. Commun. Probab.,
20 (2015), 66.

[3] D. B. Rokhlin, Asymptotic sequential Rademacher complexity of a finite function class, Arch.
Math. (Basel), 108 (2017), pp. 325–335.

A. I. Rytova (Moscow, Russia). Asymptotics of numbers of particle in
a branching random walk with heavy tails. 23

We consider a continuous time branching random walk on an integer lattice Zd,
d � 1. Suppose that initially there is a single particle, which performs a random walk

23Supported by the Russian Science Foundation (grant 17-01-00468-a).
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on sites of Zd until reaching the special site x0 ∈ Zd, where it can either die or give
a random number of offspring, and then each one evolves independently according to
the same rules. The underlying random walk is assumed to be symmetric, spatially
homogeneous, and irreducible. Such branching random walks were studied by many
authors (see, e.g., [1] and references therein). The main objects of interest are the
local (i.e., determined at each site of Zd) and the total particles numbers. As a rule,
such models are considered under the assumption that the variance of random walk
jumps is finite; therefore, the new effects of infinite variance condition are expected.
In [2] the transition intensities were subject to the relation

lim
‖z‖→∞

a(0, z)‖z‖d+α = H

(
z

‖z‖
)
,

where α ∈ (0, 2) and H : Sd−1 → R, H(x) = H(−x), x ∈ Sd−1, is a continuous
positive function. As a result, all the properties of a random walk are saved, except
the finiteness of the variance of jumps. Such a random walk may be transient even
on low-dimensional lattices d = 1, 2 (see [2]). According to the scheme proposed
in [1], the asymptotics of transition probabilities (see [3]), the equations for generating
functions, and differential and integral equations for the moments of particle numbers
are obtained for the case of infinite variance of jumps, and asymptotic behavior of
their solutions is studied.

REFERENCES

[1] E. B. Yarovaya, Branching Walks in Heterogeneous Medium, Center Appl. Studies at Moscow
State Univ., Dep. Mech. and Math., Moscow, 2007 (in Russian).

[2] E. Yarovaya, Branching random walks with heavy tails, Comm. Statist. Theory Methods, 42
(2013), pp. 3001–3010.

[3] A. I. Rytova and E. B. Yarovaya, Multidimensional Watson lemma and its applications,
Math. Notes, 99 (2016), pp. 406–412.

S. M. Sitnik (Voronezh, Russia). Turán-type inequalities and their appli-
cations in probability. 24

Turán-type inequalities, which secure the logarithmic convexity with respect to
parameters or arguments of special functions, are known to be useful in various the-
oretical and applied problems. We mention the papers [1], [2], [3], [4], where such
inequalities were obtained for various types of special functions: orthogonal poly-
nomials, Bessel functions and their modifications, hypergeometric functions and their
generalizations, Mittag-Leffler functions, etc.

This talk is concerned with applications of some results of [1], [2], [3], [4] to
problems of stochastic mathematics, probability, mathematical statistics, and finan-
cial mathematics. These applications involve problems of estimation of parameters of
joint Poisson distribution and maximum likelihood estimates for mixtures of Watson
distributions, optimization of risk forecasts for one bank credit model, convergence of
iteration algorithms in the blocking probabilities problem, and optimization of “tails”
of Bernoulli distribution.

REFERENCES

[1] D. Karp and S. M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions,
J. Math. Anal. Appl., 364 (2010), pp. 384–394.

24Supported by the Ministry of Education and Science of the Russian Federation (project
02.A03.21.0008).
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[2] S. M. Sitnik and Kh. Mehrez, Proofs of some conjectures on monotonicity of ratios of Kum-
mer, Gauss and generalized hypergeometric functions, Analysis (Berlin), 36 (2016), pp. 263–268.

[3] Kh. Mehrez and S. M. Sitnik, On monotonicity of ratios of some q-hypergeometric functions,
Mat. Vesn., 68 (2016), pp. 225–231.

[4] S. M. Sitnik and Kh. Mehrez, On monotonicity of ratios of some hypergeometric functions,
Sib. Elektron. Mat. Izv., 13 (2016), pp. 260–268.

V. V. Smorodina (St. Petersburg, Russia). Representation of solutions to
initial-boundary value problems by mean values of functionals of processes
reflecting from the boundary. 25

We consider the initial-boundary value problem for the equation ∂u/∂t =
(σ2/2)Δu in a bounded domain D ⊂ R2 with smooth boundary ∂D, the initial condi-
tion u(0, x) = f(x), and the Neumann boundary condition (∂u/∂n)|∂D = (∂f/∂n)|∂D,
where n denotes the outward unit normal vector to the boundary curve ∂D. For the
solution to the initial-boundary value problem in the case when (∂f/∂n)|∂D = 0, we
have the representation u(t, x) = Ef(Xx(t)), where Xx(t) is a Wiener process σw(t)
emitted from a point x ∈ D and reflected from the boundary when it is reached. It
should be noted that, in contrast to the process Xx(t) which is stopped upon hit-

ting the boundary, the construction of the process X̃x(t) reflected from the boundary
involves certain technical difficulties (because the paths of the Wiener process are
nowhere differentiable) and is related to the so-called Skorokhod problem (see [1]).
Solving the Skorokhod problem for a domain D means the construction, for each
(nonrandom) continuous path emitted from an arbitrary point x ∈ D, of a version
thereof which “reflects from the boundary.” The Skorokhod problem is known to be
solvable on a broad class of domains; for a detailed account of the results, see [2].
Two points are worth mentioning here. First, for a smooth curve, its “reflected”
version (in the sense of Skorokhod) does not agree with its classical reflection (such
that its normal component of the tangent vector of the curve changes its sign upon
hitting the boundary of the domain). Second, the difficulties associated with solving
the Skorokhod problem are exacerbated by the fact that it is by no means always
convenient to deal with processes involving only continuous paths; processes with
piecewise-constant paths are frequently more handy. This, in turn, calls for the need
to solve again the Skorokhod problem.

We propose a new method of construction of a probabilistic representation of
solutions to initial-boundary value problems based on the construction of a special
extension on the initial function from the domain to the entire plane. We employ the
Wiener process σw(t), but we make it “feel” the boundary of the domain by extending
the initial function from the domain D onto the entire plane in a special (different)
way.

For each fixed x ∈ D we construct the representation F x of the initial function f
as a series of entire functions on C2 converging to the function f in any disk Dx

centered at the point x and located completely in D.

The probabilistic representation of the solution u(t, x) to the initial-boundary
value problem reads as u(t, x) = limM→∞ EF x

M (x + σw(t)), where F x
M denotes the

Mth partial sum of the series defining the function F . For each fixed M the func-
tions FM in the last formula are entire analytic functions on C2; this enabled us
to obtain a probabilistic representation of the solution for complex σ satisfying the
condition Reσ2 � 0 (in particular, for the Schrödinger equation) also. It is also

25Supported by the Russian Science Foundation (grant 15-01-01453).
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shown that in this probabilistic representation a Wiener process can be replaced by
an appropriate random walk.

REFERENCES

[1] A. V. Skorokhod, Stochastic equations for diffusion processes in a bounded region, Theory
Probab. Appl., 6 (1961), pp. 264–274.

[2] A. Pilipenko, An Introduction to Stochastic Differential Equations with Reflection, Lect. Pure
Appl. Math. 1, Potsdam Univ. Press, Potsdam, 2014.

A. I. Sukhinov (Rostov-on-Don, Russia), A. V. Nikitina (Rostov-on-Don,
Russia), V. V. Sidoryakina (Taganrog, Russia), A. A. Semenyakina (Taganrog,
Russia). Justification and modeling of the turbulent exchange coefficients
of reservoirs on the basis of stochastic method. 26

Stochastic methods are frequently useful for describing turbulent flows in reser-
voirs. Under this approach, various fluctuating variables are considered as random
functions. At dissipative scales the turbulence is known to have an involved statistical
structure due to strong intermittence. Field research of shallow reservoirs (the Sea of
Azov and the Étang de Berre lagoon) produced data on velocity fluctuations of water
flow at some points of reservoirs using WHS600 Sentinel Acoustic Doppler Current
Profiler. Among various approximations of the vertical turbulent exchange coefficient,
the best results were obtained for algebraic subgrid models where turbulence flows
were defined as space- or (correlation) time-averaged products of fluctuations of the
flow velocity components and the transported physical quantity.

At large scales of vertical grids, mechanisms of vertical turbulent exchange are
suppressed during numerical modeling, which calls for sufficiently small scales of ver-
tical resolution. The vertical turbulent exchange coefficient for the Sea of Azov and
the Étang de Berre lagoon is evaluated on the basis of statistical data for the velocity
field of the water flow and by using Monin and Smagorinskii’s subgrid models [1].

REFERENCES

[1] A. S. Monin, Turbulence and microstructure in the ocean, Sov. Phys. Usp., 16 (1973),
pp. 121–131.

T. S. Turova (Lund, Sweden). Coulomb systems in physics and biology.
We consider the system of particles on a finite interval with pairwise nearest

neighbors Coulomb interaction and external force. This model was introduced by
Malyshev [1] to study the flow of charged particles in a network-like media on a rig-
orous mathematical level. In the future, we hope to use this model to study (electric)
neuronal activity. In [1] it was proved that at the zero temperature case (ground
states) there are phase transitions in the structure of the configurations of charges
under different strengths of external force.

The local structure of Gibbs configurations at positive temperature but without
an external force was analyzed in [2], where interactions of more general form were
also considered. It was proved that, for any positive temperature, the configurations
remain strongly localized at the minima of the energy.

Continuing the studies of [2], we consider Gibbs configurations in the presence
of an external electric field. In [3], we derive the asymptotics for the mean and the
variances of the distances between the neighboring charges. Due to its simplicity, this

26Supported by the Russian Science Foundation (grant 17-11-01286).
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model features a “precise resolution”: we are able to distinguish five different phases.
This, combined with the results of [1], suggests continuity of the distribution at zero
temperature. We prove that for the weak force the charges remain densely and almost
equally spaced over the entire interval (as observed for the zero force case in [2]), at
the critical value of external force they occupy only a finite part of the interval, and
when the force is above the critical value all the charges collapse at one end of the
interval. Note that here the phase transitions (along the strength of the external
force) are observed at any positive temperature.

The methods we use in [3] develop the probabilistic approach of [2]; however, it
is applied now under the inhomogeneous setting.

REFERENCES

[1] V. A. Malyshev, Phase transitions in the one-dimensional Coulomb medium, Problems Inform.
Transmission, 51 (2015), pp. 31–36.

[2] V. A. Malyshev and A. A. Zamyatin, One-dimensional Coulomb multiparticle systems, Adv.
Math. Phys., 2015 (2015), no. 857846.

[3] T. S. Turova, Phase Transitions in the One-Dimensional Coulomb Gas Ensembles, preprint,
http://arxiv.org/abs/1606.04479, 2016.

S. I. Uglich (Rostov-on-Don, Russia). On optimization of quasilinear
systems with several random priorities. 27

We are concerned with optimization of quasilinear models describing the interac-
tion (in a unique system) of various competitive structures with due consideration of
random prioritization of outsiders by a referee who makes decisions based on expert
recommendations.

In the present talk, we consider a model assuming that a system involves three
structures and that priorities αi (i = 1, 2, 3) are arbitrarily uniformly distributed
random variables with ranges in the interval [0, 1]. Let F = E(Fα1

1 Fα2
2 Fα3

3 ) be the
objective function of the referee, where Fi are linear functions of n variables considered
on the domain where they are positive. Two cases are considered: when random
variables are independent and when α1 +α2 +α3 = 1 (in the case of priorities; see [1]
and [2]). Using special computer procedures we are able to show that in each of these
cases the function F assumes its maximum Fmax at the intersection of hyperplanes∑n

i=1 aijxi = t�j , j = 1, 2, where t�1, t
�
2 are roots of a system of two transcendental

equations depending on the negative parameters c1 and c2 (obviously, the system is
case-specific). The parameters cj are coefficients of the representation of the function∑n

i=1 ai3xi involved in F3 in terms of the functions
∑n

i=1 aijxi, which are components
of Fi, i = 1, 2. The function Fmax(c1, c2) is minimized numerically. It is shown that
this function assumes its minimum value. This value can be interpreted as an optimal
sum which can be allocated by a referee for normal operation of the system.

REFERENCES

[1] V. S. Vagin and I. V. Pavlov, Modeling and optimization of quasi-linear complete systems
with using random nature of priorities, Vestnik RGUPS, no. 1, 2016, pp. 135–139.

[2] N. P. Krasii, Optimization of quasi-linear models with three independent priorities, in Mod-
ern Methods and Problems of Harmonic Analysis and Applications VII: Abstracts of Talks,
Rostov-on-Don, 2017, pp. 133–134 (in Russian).

27Supported by the Russian Foundation for Basic Research (grant 16-01-00184-a).
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I. V. Tsvetkova (Rostov-on-Don, Russia). Numerical evaluation of the
canonical hedge for incomplete markets with countable state set. 28

We consider a statistical (1, Z)-market on (Ω,F), where F = (Fk)
1
k=0, F0 =

{Ω,∅}, F1 =σ(B1, B2, . . . ). Let Z=(Zk,Fk)
1
k=0 be an F-adapted random process

(discounted stock value). If the market under consideration is incomplete, then a tran-
sition to a complete one is affected by construction of an interpolation market. To this
end, we consider a special Haar interpolating filtration H=(Hn)

∞
n=0, where H0 =F0,

H1 = σ{Bn1}, H2 =σ{Bn1 , Bn2}, . . . , H∞ = σ{Bn1 , Bn2 , . . . }=F1, and {ni}∞i=1 is
an arbitrary fixed permutation on N. Let a martingale measure P have the weak
property of universal Haar uniqueness [1]. Consider a martingale Haar interpola-
tion Y =(Yn,Hn, P )

∞
n=0 of the random process Z : Yn =EP [Z1 |Hn]. The market

interpolating the original one is complete, and hence for any financial commitment
there is a replicating self-financing brief bag π = (βn, γn)

∞
n=0. Quantile hedging is

used for practical calculations of the components of π. To this end, from any arbi-
trarily small ε (computational accuracy) one evaluates the computational horizon N :∑N

i=1 P(Bni) > 1− ε.

REFERENCES

[1] I. Pavlov, Some processes and models on deformed stochastic bases, in Proceedings of the 2016
2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science
and Operations Management (SMRLO’16, Beer Sheva, Israel, February 15–18, 2016), IEEE
Computer Soc., Washington, DC, pp. 432–437.

A. E. Chistyakov (Rostov-on-Don, Russia), E. F. Timofeeva (Stavropol,
Russia). Processing of full-scale experiments for evaluating parameters of
sea waves based on stochastic approaches. 29

The problem of theoretical investigation of wave processes in stochastic inhomo-
geneous media calls for the study of various phenomena accompanying propagation
of waves and in finding stochastic characteristics of wave fields. In the study of wave
hydrodynamic processes occurring in shallow reservoirs, we perform the following
full-scale experiment: a measurement mechanism is submerged at various depths and
wave oscillations are performed within a minute using a video camera. The data
obtained in the experiment require processing. Primary processing of video materi-
als with the aim of finding the (time-dependent) water surface elevation function is
performed using the pattern recognition machinery. The algorithm developed and its
numerical implementation allow one to sufficiently and accurately evaluate the level
elevation function. The following parameters of wave processes are obtained using sta-
tistical and spectral methods: spectrum, medium frequency. We also verify the con-
jectures that the spectrum of the level elevation function has normal and log-normal
distributions. It is shown that wave processes can be described by three quantities:
the expectation (the wave period), the variance, and the maximal spectrum value.
These quantities are evaluated during processing of data obtained from the full-scale
experiment. The values obtained are used as initial data for the previously developed
mathematical models of wave hydrodynamic processes [1].

28Supported by the Russian Foundation for Basic Research (grant 16- 01-00184-a). 
29Supported by the Russian Science Foundation (grant 17-11-01286).
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REFERENCES

[1] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, and A. V. Shishenya, Mathemat-
ical model for calculating coastal wave processes, Math. Models Comput. Simul., 5 (2013),
pp. 122–129.

V. V. Shamraeva (Rostov-on-Don, Russia). Existence of special
interpolating martingale measures admitting transformation of incomplete
financial markets into complete ones. 30

Let (Ω,F) be a filtered space F=(F0,F1), where F0 = {Ω,∅} and F1 =
σ{Bi, i ∈ N = {1, 2, . . .} : ⋃∞

i=1 Bi = Ω, Bi ∩Bj = ∅ (i �= j)}. Consider the random

process Z = (Zn,Fn)
1
n=0, where Z0 := a, Z1|Bi := bi. By P(Z,F) we denote the set

of nondegenerate martingale measures of the process Z.

Definition. We say that P ∈ NBC (P satisfies the barycenter noncoinci-
dence condition) if the series

∑∞
i=1 bipi is absolutely convergent and

∑
I bipi/∑

I pi �=
∑

J bjpj/
∑

J pj for any I, J ⊂ N such that I ∩ J = ∅, |I| � |J |.
In [1], [2] it was proved that in the case of a finite σ-algebra F1 the set NBC

is nonempty if P(Z,F) �= ∅ and a �= bi for any i. So far, the question about
nonemptiness of NBC in the case of countably generated F1 remained open and no
example of a martingale measure satisfying NBC was available. The following theorem
gives a partial answer to this problem.

Theorem. Let b1 < a < b2 < b3 < b4 < · · · , bi − bi−1 � bi−1 for any i � 2.
Then NBC �= ∅.

If the inequality in the definition of NBC is satisfied only for I and J such that
|I| = 1 and if N\J is finite, then we arrive at the definition of the weakened barycenter
noncoincidence condition and of the corresponding set WNBC. The papers [2], [3]
give sufficient conditions for WNBC to be nonempty.

REFERENCES

[1] M. N. Bogacheva and I. V. Pavlov, Haar extensions of arbitrage-free financial markets to
markets that are complete and arbitrage-free, Russian Math. Surveys, 57 (2002), pp. 581–583.

[2] I. V. Pavlov, I. V. Tsvetkova, and V. V. Shamraeva, Some results on martingale measures
relating to the barycenter noncoincidence condition in one period models of financial markets,
Vestnik RGUPS, no. 3 (47), 2012, pp. 174–181.

[3] I. V. Pavlov, V. V. Shamraeva, and I. V. Tsvetkova, On the existence of martingale mea-
sures satisfying the weakened condition of noncoincidence of barycenters in the case of countable
probability space, Theory Probab. Appl., 61 (2017), pp. 167–175.

S. Ya. Shatskikh, L. E. Melkumova (Samara, Russia). Maximum-likeli-
hood method in de Finetti’s theorem. 31

On the space {R∞,B(R∞)}, we consider “coordinate” random variables ek(z) =
zk, z = (z1, . . . , zn, . . . ) ∈ R∞, k = 1, . . . ,∞. For a conditional distribution function
F (x|y) satisfying the “classical regularity conditions” [1], we introduce a family of
probability measures P = {μg} with symmetric finite-dimensional distributions

(∗) μg{z : ek(z) � xk, k = 1, n} =

∫ ∞

0

n∏
k=1

F (xk|y)g(y) dy, n = 1, . . . ,∞,

30Supported by the Russian Foundation for Basic Research (grant 16- 01-00184-a).
31This research was carried out with the financial support of the Russian Foundation for Basic

Research (grants 16-01-00184-a and 16-41-630676).
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where g(y) are probability densities that are positive on [0,+∞). According to de
Finetti’s theorem, (∗) follows from the conditional independence and identical dis-
tribution of the infinite sequence of exchangeable random variables with respect to
some random variable s∗(z) (or the σ-algebra generated by it). There are various
approaches towards construction of the random variable s∗(z) (see [2], [3], [4]).

On the basis of representation (∗), we consider the construction of s∗(z) using the
maximum-likelihood method.

Using the likelihood function

L(y; e1(z), . . . , en(z)) =
n∏

k=1

F (ek(z)|y), y ∈ [0,∞),

we introduce the sequence of maximum likelihood estimators (MLE)

sn(z) ∈ argmin
y∈[0,∞)

L
(
y; e1(z), . . . , en(z)

)
.

Theorem. Under the “classical regularity conditions” there exist an MLE se-
quence {sn(z)} and a statistics s∗(z) with the following properties:

(1) μg{z : sn(z) → s∗(z)} = 1 for any μg ∈ P;

(2) μg{z : s∗(z) � x} =
∫ x

0
g(y) dy for any μg ∈ P;

(3) for complete families of densities {g(y)} (positive, gamma-), the statistics
s∗(z) is complete for families of probabilities μg;

(4) the following relations hold:

μg{z : ek(z) � xk, k=1, . . . , n | s∗(z) = y} =

n∏
k=1

μg{z : ek(z) � xk | s∗(z) = y}

=

n∏
k=1

F (xk|y), y ∈ [0,∞),

and there is no dependency on the density g(y).

Examples of MLE are considered for densities f(x|y) from one-parameter expo-
nential families [5].

REFERENCES
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[2] Y. S. Chow and H. Teicher, Probability Theory. Independence, Interchangeability, Martin-
gales, 3rd ed., Springer Texts Statist., Springer, New York, 2003.

[3] J. F. C. Kingman, Uses of exchangeability, Ann. Probab., 6 (1978), pp. 183–197.
[4] E. M. Knutova and S. Ya. Shatskikh, Asymptotic properties of conditional quantiles for

a class of symmetric distributions, Theory Probab. Appl., 51 (2007), pp. 350–358.
[5] E. L. Lechmann and G. Casella, Theory of Point Estimation, 2nd ed., Springer Texts Statist.,
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A. N. Shiryaev (Steklov Mathematical Institute of Russian Academy of
Sciences, Moscow, Russia), E. A. Feinberg (Stony Brook University, USA). On
forward and backward Kolmogorov equations of general jump Markov
processes. 32

To define a general jump Markov process, we first introduce aQ-function q(x, t, B)
satisfying the following two conditions:

(a) for x ∈ X , t ∈ [T0, T1) the function q(x, t, · ) is a signed measure on the space
of states (X,B(X)) (a standard Borel space) and has the properties q(x, t,X) � 0
and 0 � q(x, t, B \ {x}) <∞ for each B ∈ B(X);

(b) for each B ∈ B(X) function q(x, t, B) is measurable in (x, t).
We also assume that the function q is locally L1-bounded; that is,
(c)

∫ s

T0
q(x, t) dt <∞ for each s ∈ (T0, T1), where q(x, t) = −q(x, t, {x}).

Let Ω be the space of all sequences ω = (t0, x0, t1, x1, . . . ), t0 = T0, and
let (tn, xn)n�0 be a multivariate point process on (Ω,F ). With each Q-function q
satisfying conditions (c) one may associate the random (predictable) measure ν: for
t ∈ [T0, T1) and B ∈ B(X)

ν(ω, [T0, t), B) =

∫ t

T0

∑
n�0

I(tn < s � tn+1)q(xn, s, B \ {xn}) ds.

The measure ν and the probability measure γ on X define (Jacod, 1975) the
probability measure P on (Ω,F ) such that P (x0 ∈ B) = γ(B), B ∈ B(X); addition-
ally, ν is the compensator of the random measure μ of the multivariate point process
(tn, xn)n�0.

The process

Xt(ω) =
∑
n�0

I(tn � t < tn+1)xn, t ∈ [T0, T1),

is called a general jump Markov process.

Consider the functions (Feller) P
(0)

(u, x; t, B) = I(x ∈ B)e−
∫

t
u
q(x,s) ds,

P
(n)

(u, x; t, B) =

∫ t

u

∫
X

e−
∫ t
u
q(x,θ)dθq(x, s, dy \ {x})P (n−1)

(s, y; t, B) ds, n � 1.

We also set P (u, x; t, B) =
∑∞

n=0 P
(n)

(u, x; t, B).
We show that P (u, x; t, B) is a transition function and satisfies (under condi-

tion (c)) the backward Kolmogorov equation

∂

∂u
P (u, x; t, B) = q(x, u)P (u, x; t, B)−

∫
X

q(x, u, dy \ {x})P (u, y; t, B).

If P (u, x; t, B) = 1 for all u, x, t, then P is the unique solution of this equation.
It is also shown that, under the local boundedness q (that is, when supt∈[T0,s) <

∞, s ∈ [T0, T1), x ∈ X), the function P is a minimal solution to the forward Kol-
mogorov equation

∂

∂t
P (u, x; t, B) = −

∫
B

q(y, t)P (u, x; t, dy) +

∫
X

q(y, t, B \ {y})P (u, x; t, dy).

Backward and forward equations are studied in detail.

32The work of A. N. Shiryaev was supported by the Russian Science Foundation (grant
14-21-00162) and performed at the Steklov Mathematical Institute of Russian Academy of Sciences.
In the present study, A. N. Shiryaev investigated forward equations.
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L. L. Shiryaeva (Samara, Russia). On properties of the three-parameter
Grubbs’ copula-function.

Consider the statistics

Tn,(1) = (X −min{Xi})/S and T (1)
n = (max{Xi} −X)/S,

which are studentized deviations of measurements from the mean values calculated
from n-sample (see [1]). It is assumed that in a normally distributed sample {Xi}ni=1

there is one abnormal observation Xout (with unknown number). So, the emission
Xout differs from the remaining observations by the shift parameter α and the scale

parameter ν > 0. Let Gn,(1)(x;α, ν) = P(Tn,(1) < x), G
(1)
n (x;α, ν) = P(T

(1)
n <

x), Υn(x, y;α, ν) = P({Tn,(1) < x} ∩ {T (1)
n < y}). Recursive relations for de-

scribing Grubbs’ statistic distribution functions Tn,(1) and T
(1)
n can be found in [2].

A three-parameter copula is extracted from the joint distribution Υn( · ) using inver-
sion. Graphs of the modeled values from the copula are analyzed. It is shown that
a copula is capable of describing negative dependencies between random variables. In
the case α = 0, the copula becomes symmetric. The effect of copula parameters n,
α, and ν on the coefficients of its tail dependence is examined. It is shown that there
exists a domain in which the copula agrees with the lower Fréchet–Hoeffding bound.
The effect of copula parameters on the boundary of this domain is studied.

REFERENCES

[1] F. E. Grubbs, Sample criteria for testing outlying observations, Ann. Math. Statist., 21 (1950),
pp. 27–58.

[2] L. K. Shiryaeva, On distribution of Grubbs’ statistics in case of normal sample with outlier,
Russian Math. (Iz. VUZ), 61 (2017), pp. 72–88.

E. L. Shishkina (Voronezh, Russia). Fractional Euler–Poisson–Darboux
equation and random walks. 33

The “fictitious particle walk” Markov random process, such that the change in the
motion direction is subject to an inhomogeneous Poisson process, leads to a general
hyperbolic second-order equation with coefficients depending on time (see [1]). In the
case of a slow Markov random process, we get the following problem for the fractional
Euler–Poisson–Darboux equation:(

∂2

∂t2
+

2α

t

∂

∂t

)β

p(x, t) =
∂2p(x, t)

∂x2
, β ∈

(
0,

1

2

)
,(1)

p(0, t) = δ2α(t), pt(0, t) = 0,(2)

where t > 0, x ∈ R, p = p(x, t) is the random walk law of particles in the space Rn,
α/t is the intensity of the inhomogeneous Poisson process, α > 0, the fractional Bessel
derivative (∂2u/∂t2 + (2α/t)∂u/∂t)β is defined in [2], and the weighted distribution
δ2α is defined in [3]. The main result of this talk is as follows.

Theorem. The solution to problem (1), (2) reads as

p(x, t) = [(H−1)ξ ch(xξ
α)](t),

where (H−1)ξ is the explicit inverse transform with the Fox function in the kernel.

33Supported by the Ministry of Education and Science of the Russian Federation (project
02.A03.21.0008).
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A. L. Yakymiv (Moscow, Russia). On the order logarithm of a random
A-permutation.

Let Sn be the group of all permutations of {1, 2, . . . , n}. By M(σ) we denote the
order of a permutation σ from Sn. The following transparent example demonstrates
one of the advantages of the probabilistic approach to combinatorial problems. In [1]
it was shown that the random variable lnM(σn) is asymptotically normal with the
mean (ln2 n)/2 and variance (ln3 n)/3, where σn is random permutation uniformly
distributed on Sn. Indeed, according to [2], the order of permutations from Sn varies
in the following broad range: from 1 (the order of the identical permutation) to
exp{(1+ δ(n))√n lnn} (the maximal order), where δ(n) → 0. From [1] it follows that
there exists a sequence ε(n) ↓ 0 such that a random permutation taken “at random”
from Sn has an order from exp{(1/2 − ε(n)) ln2 n} to exp{(1/2 + ε(n)) ln2 n} with
probability tending to 1. This remark is much more informative than the previous
one. For a survey of further investigations in this area, see [3]. We fix a set A ⊆ N.
A permutation σ is called an A-permutation if the lengths of all cycles in σ lie in A.
Let Tn be the class of all A-permutations from Sn and let a random permutation τn be
uniformly distributed on Tn. The following assertion is valid. If the sequence {|Tn|/n!}
is RO-variable at infinity with lower exponent exceeding −1, then the random variable
lnM(τn) is asymptotically normal with the mean

∑n
i=1 χ{i ∈ A}(ln i)/i and the

variance
∑n

i=1 χ{i ∈ A}(ln2 i)/i.
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pp. 42–50.
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