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POISSONIAN TWO-ARMED BANDIT: BAYESIAN APPROACH1

We consider a Bayesian approach to a continuous time two-armed bandit problem, in

which incomes are described by poissonian processes. The problem is studied in a discrete

approximation. To do this, a control horizon is divided into equal consequtive half-intervals, at

which the strategy remains piece-wise constant and incomes arise in batches corresponding to

these half-intervals. For finding the piece-wise constant Bayesian strategy and corresponding

Bayesian risk, a recursive difference equation is obtained. In the limiting case as the number

of half-intervals grows infinitely, the existence of a limiting value of the Bayesian risk is

established and a partial differential equation for its determining is derived.

We consider a Bayesian approach to poissonian two-armed bandit, which is different from

presented in [1]. Poissonian two-armed bandit is a right-continuous jump-like controlled random

process {X(t), 0 ≤ t ≤ T}, which values are interpreted as incomes increasing by one at the time

points of jumps. A control is carried out using two actions. Let’s use a notation y((t, t + ε]) = ` if

on the half-interval t′ ∈ (t, t + ε], ε > 0 the action y(t′) = ` was permanently used (` = 1, 2). If

this permanent control is used then increments of the process X(t) depend on chosen actions as

follows

Pr (X(t + ε)−X(t) = i|y((t, t + ε]) = `) = p(i, ε; λ`) =
(λ`ε)

i

i!
e−λ`ε,

i = 0, 1, 2, . . . ; ` = 1, 2. The value X(t + ε) −X(t) is interpreted as a batch of incomes obtained

on the half-interval (t, t + ε]. So, a vector parameter θ = (λ1, λ2), where λ1, λ2 are intensities of

incomes’ generation, completely describes poissonian two-armed bandit. The set Θ of admissible

values of parameter is assumed to be known.

For a control, piece-wise constant strategies are used. At the start of the control both actions

are used on the half-intervals of the length t0. Then a control horizon is divided into equal half-

intervals of the length ε, on which the actions remain constant. A control strategy σ at the point

of time t, corresponding to the start of the current half-interval, determines a choice (generally

speaking, a random) of the action y((t, t + ε]) depending on the known history (X1, t1, X2, t2).
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Here t1, t2 are current cumulative times of both actions applications (t1 + t2 = t) and X1, X2 are

corresponding cumulative incomes.

Let’s denote by X1(t), X2(t) the current values of incomes at the point of time t. If the

values of intensities λ1, λ2 were known, one should always choose the action corresponding to

the largest of them, the total expected income on the control horizon T is thus T max(λ1, λ2). The

actual expected income is less then the maximal one by the value Lε,T (σ, θ) = T max(λ1, λ2) −
Eσ,θ (X1(T ) + X2(T )), which is called the regret. By Eσ,θ we denote the mathematical expectation

computed over the measure generated by the strategy σ and the parameter θ. Here and below

the index ε highlights the usage of piece-wise constant strategies. Let’s assign a prior distribution

density µ(θ) = µ(λ1, λ2) on the set Θ. Bayesian risk computed with respect to a prior distribution

density µ(θ) is

RB
ε,T (µ) = inf

{σ}

∫

Θ

LT (σ, µ)µ(θ)dθ, (1)

corresponding optimal strategy is called a Bayesian strategy.

Theorem 1. Consider a recursive difference equation

Rε(X1, t1, X2, t2) = min(R(1)
ε (X1, t1, X2, t2), R

(2)
ε (X1, t1, X2, t2)), (2)

where

R(1)
ε (X1, t1, X2, t2) = R(2)

ε (X1, t1, X2, t2) = 0, (3)

if t1 + t2 = T and then

R
(1)
ε (X1, t1, X2, t2) = εg(1)(X1, t1, X2, t2) + T

(1)
ε Rε(X1, t1 + ε, X2, t2),

R
(2)
ε (X1, t1, X2, t2) = εg(2)(X1, t1, X2, t2) + T

(2)
ε Rε(X1, t1, X2, t2 + ε)

(4)

if 2t0 ≤ t < T . Here functions {g(`)(X1, t1, X2, t2)} and operators {T(`)
ε } are as follows

g(1)(X1, t1, X2, t2) =

∫∫

Θ

(λ2 − λ1)
+λX1

1 e−λ1t1λX2
2 e−λ2t2µ(λ1, λ2)dλ1dλ2,

g(2)(X1, t1, X2, t2) =

∫∫

Θ

(λ1 − λ2)
+λX1

1 e−λ1t1λX2
2 e−λ2t2µ(λ1, λ2)dλ1dλ2,

T
(1)
ε F (X1, t1, X2, t2) =

∞∑
j=0

F (X1 + j, t1, X2, t2)× εj

j!
,

T
(2)
ε F (X1, t1, X2, t2) =

∞∑
j=0

F (X1, t1, X2 + j, t2)× εj

j!
.

(5)
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Bayesian strategy prescribes to choose the `th action (i.e., σ`(X1, t1, X2, t2) = 1) if

R
(`)
ε (X1, t1, X2, t2) has the smaller value (` = 1, 2). In the case of a draw R

(1)
ε (X1, t1, X2, t2) =

R
(2)
ε (X1, t1, X2, t2), the choice of the action is arbitrary. Bayesian risk (1) is

Rε,T (µ) = t0

∫∫

Θ

|λ1 − λ2|µ(λ1, λ2)dλ1dλ2 +
∞∑

X1=0

∞∑
X2=0

Rε(X1, t0, X2, t0)
tX1
0 tX2

0

X1!X2!
, (6)

and, in particular, Rε,T (µ) = Rε(0, 0, 0, 0) if t0 = 0.

In what follows, let’s assume that ε → 0. From (2)–(6) the theorem follows.

Theorem 2. A limit R(X1, t1, X2, t2) = limε→+0 Rε(X1, t1, X2, t2) exists if t1 ≥ t0, t2 ≥ t0.

This limit is bounded and satisfies Lipschitz conditions for t1, t2. A limiting Bayesian risk (1) is

RT (µ) = lim
t0→+0, ε→+0

Rε,T (µ) = lim
t0→+0

R(0, t0, 0, t0). (7)

A limit R(X1, t1, X2, t2) satisfies partial differential equation

min

(
∂R

∂t1
+ R(X1 + 1, t1, X2, t2) + g(1)(X1, t1, X2, t2),

∂R

∂t2
+ R(X1, t1, X2 + 1, t2) + g(2)(X1, t1, X2, t2)

)
= 0

(8)

with initial condition R(X1, t1, X2, t2) = 0 at t1 + t2 = T . A limiting Bayesian risk (1) is computed

according to (7). Differential equation (8) describes at the same time the evolution of the Bayesian

risk R(X1, t1, X2, t2) and also the Bayesian strategy, which prescribes to choose the `th action if

the `th term on the left-hand side of (8) has the smaller value; in the case of a draw the choice of

the action can be arbitrary.
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