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We consider a leader, who prices a resource or good, and tries to change the behavior
of selfish agents in a desired way. Usually, leader’s aim is to stimulate a broadly understood
socially optimal behavior. In this case the desired price can be approximated by using dual
gradient-based algorithms, which require the information only about agent reactions. We
discuss two such cases: resource pricing in communication networks [1], and transfer pricing
within a corporation [2].

Let us consider the last case in more detail. Assume that a firm consists from n production
and m sales divisions. There are d commodities produced by each production division. The
same commodities are saled by each sales division. Denote by fi : Xi 7→ R+, i = 1, . . . ,m the
revenue functions of the sales divisions, and by gi : Yi 7→ R+, i = 1, . . . , n the cost functions
of the production divisions. A vector xi ∈ Xi describes the amounts of commodities to be
sold by i-th sales division, and yi ∈ Yi describes the amounts of commodities to be produced
by i-th production division.

Assumption 1. The sets Xi, Yi are convex, compact, and contain [0, ε]d.

Assumption 2. The functions fi : Xi 7→ R+ (resp., gi : Yi 7→ R+) are Lipschitz, non-
decreasing in each argument, and fi(0) = gi(0) = 0.

Assumption 3. The functions fi (resp., gi) are strongly concave (resp., strongly convex).

The firm announces the commodity transfer price vector λt ∈ Rd
+ with the obligation

to buy the commodities at these prices from the production divisions, and sell them to the
sales divisions. Put ⟨a, b⟩ =

∑d
i=1 aibi. Optimal division (agent) reactions are defined by

x̃i(λ) ∈ arg max
xi∈Xi

(fi(xi)− ⟨λ, xi⟩), i = 1, . . . ,m,

ỹi(λ) ∈ arg max
yi∈Yi

(⟨λ, yi⟩ − gi(yi)), i = 1, . . . , n,

We will say that the plan z̃(λ) = (x̃(λ), ỹ(λ)) is stimulated by the transfer price vector λ.
The goal of the firm manager is to stimulate the agent reactions coinciding with the optimal
solution z∗ = (x∗, y∗) of the total profit maximization problem:

F (x, y) =

m∑
i=1

fi(xi)−
n∑

i=1

gi(yi) → max
(x,y)∈S

,

S =

(x, y) ∈ Z :
m∑
i=1

xi =
n∑

j=1

yj

 , Z =
m∏
i=1

Xi ×
n∏

j=1

Yj .

Applying the SOLO FTRL algorithm [3] to the dual problem, we get the recurrence
relation

λt = −
∑t−1

j=1 ∆z̃(λj)√∑t−1
j=1 ∥∆z̃(λj)∥2

, λ0 = 0; ∆z̃(λ) :=
n∑

i=1

ỹi(λ)−
m∑
i=1

x̃i(λ).

The obtained algorithm uses only the information on division reactions to current prices. It
does not depend on any parameters and requires no information on the production and cost
functions (from the manager point of view). The next result shows that the optimality gap
and feasibility residuals are of order T−1/4 in the number T of iterations.
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Theorem 1 For the average transfer price vector λT = 1
T

∑T
t=1 λt we have

F (z∗)− F (z̃(λT )) ≤
C

T 1/4
, ∥∆z̃(λT )∥ ≤ C

T 1/4
,

where the constant C depends of fi, gi, Xi, Yi, i = 1, . . . , d.

Similar results were obtained for a dynamic problem, where the functions fi gi depend
on a sequence of i.i.d. random variables.

The leader also can be selfish. Consider, for example, the product revenue management
problem with unknown demand. The main difference with the previous case is that the
leader objective function need not be convex, and its gradient is unknown. To overcome the
first difficulty we use price discretization and its probabilistic interpretation. Then we use
zero-order algorithms for price tuning.
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