Tight asymptotic of probability of singularity of Bernulli square matrices

Vladimir Blinovsky
Institute for Information Transmission Problems, B. Karetnyi 19, Moscow, Russia, Instituto de Matematica e Statistica, USP, Rua do Matao 1010, 05508- 090, Sao Paulo, Brazil
vblinovs@yandex.ru

There is a number of works devoted to determination of tight asymptotic of probability P_{n} that random square matrix with independent uniformly distributed ± 1 entries is singular. In this paper we prove the general

Conjecture 1 The following asymptotic equality is valid

$$
\begin{equation*}
P_{n}=n^{2} 2^{1-n}(1+o(1)) . \tag{1}
\end{equation*}
$$

Using the same arguments as in the following proof of this conjecture we prove the following asymptotic equality is valid

$$
\begin{equation*}
P_{n}-4\binom{n}{2} 2^{-n} \sim 16\binom{n}{4}\left(\frac{3}{8}\right)^{n}(1+o(1)) . \tag{2}
\end{equation*}
$$

History of the problem.

The history of the problem of determining upper bound for P_{n} started in 1967 when Komlós proved that $P_{n}=o(1)$. In 1995 Kahn, Koml'os and Szemeredi proved that $P_{n}<(\alpha+o(1))^{n}$ for some $\alpha<1$ very closed to 1 . Actually that work established many interesting ideas which also used later in improvements of this bound. First such improvement was made by Tao and Vu, who improve α to 0.939 and in later work to 0.75 . Their improvement add additive combinatorics as ingredient in the proof and needs better estimation of $|\cos \phi|$. This last bound was improved by Bourgain, Wood and Vu to

$$
\begin{equation*}
P_{n} \leq\left(\frac{1}{2}+o(1)\right)^{n / 2} \tag{3}
\end{equation*}
$$

K.Tikhomirov proved tight logarithmic relation

$$
\begin{equation*}
P_{n} \leq\left(\frac{1}{2}+o(1)\right)^{n} \tag{4}
\end{equation*}
$$

