M. V. Burnashev

ON THE DISTRIBUTION OF ONE STATISTICAL SUM FROM INFORMATION THEORY

Assume that $\boldsymbol{x}_{j}, j=1, \ldots, M$, are independent and equiprobable binary n-vectors. Denote by $w_{j}=w\left(\boldsymbol{x}_{j}\right), j=1, \ldots, M$ - the weight (i.e. the number of ones) of binary n-vector $\left\{\boldsymbol{x}_{j}\right\}$. For $0 \leq z \leq 1$ consider the random sum

$$
\begin{equation*}
S(z, M, n)=\sum_{j=1}^{M} z^{w\left(\boldsymbol{x}_{j}\right)} \tag{1}
\end{equation*}
$$

The sum (1) arises often in information theory. Although all results below are non-asymptotic in n, M, they are mostly oriented to the case $n \rightarrow \infty$ and $M=e^{R n}, R>0$. Moreover, to simplify formulas we do not use below integer parts signs

Theorem 1. 1) For $0 \leq z \leq 1$ and $z^{n / 2} \leq A \leq 1$ the following bounds hold

$$
\begin{align*}
& -\frac{\ln (n+1)}{n} \leq \frac{1}{M n} \ln \mathbf{P}\{S(z, M, n) \geq M A\}+\ln 2-h\left(a_{0}\right) \leq \frac{\ln n}{n} \\
& a_{0}=\frac{\ln A}{n \ln z}, \quad h(x)=-x \ln x-(1-x) \ln (1-x), \quad 0 \leq a_{0} \leq 1 / 2 \tag{2}
\end{align*}
$$

2) For $z^{n} \leq A \leq z^{n / 2}$ the following bound holds

$$
\begin{equation*}
\frac{1}{M n} \ln \mathbf{P}\{S(z, M, n) \leq M A\} \leq h\left(a_{0}\right)-\ln 2+\frac{\ln (n+1)}{n}, \quad 1 / 2 \leq a_{0} \leq 1 \tag{3}
\end{equation*}
$$

2) For $z \geq 1$ and $1 \leq A \leq z^{n / 2}$ the following bound holds

$$
\begin{equation*}
\frac{1}{M n} \ln \mathbf{P}\{S(z, M, n) \leq M A\} \leq h\left(a_{1}\right)-\ln 2+\frac{\ln (n+1)}{n}, \quad 1 / 2 \leq a_{1} \leq 1 \tag{4}
\end{equation*}
$$

In particular, we get from (2)-(3)
Corollary 1. For any $z>0$ the following inequality holds

$$
\begin{equation*}
\mathbf{P}\left\{\left|\ln \frac{S(z, M, n)}{M z^{n / 2}}\right| \geq \sqrt{n \ln (n+1)}|\ln z|\right\} \leq(n+1)^{-M} \tag{5}
\end{equation*}
$$

Remark. It follows from (5) that if $M \sim e^{R n}, R>0$, then $S(z, M, n) \sim M z^{n / 2}$ for any $z>0$ with very high probability.

