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ON THE DISTRIBUTION OF ONE STATISTICAL SUM FROM

INFORMATION THEORY

Assume that xj, j = 1, . . . ,M , are independent and equiprobable binary n-vectors.
Denote by wj = w(xj), j = 1, . . . ,M - the weight (i.e. the number of ones) of binary
n-vector {xj}. For 0 ≤ z ≤ 1 consider the random sum

S(z,M, n) =
M∑
j=1

zw(xj). (1)

The sum (1) arises often in information theory. Although all results below are non-asymptotic
in n,M , they are mostly oriented to the case n → ∞ and M = eRn, R > 0. Moreover, to
simplify formulas we do not use below integer parts signs

Theorem 1. 1) For 0 ≤ z ≤ 1 and zn/2 ≤ A ≤ 1 the following bounds hold
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2) For zn ≤ A ≤ zn/2 the following bound holds
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2) For z ≥ 1 and 1 ≤ A ≤ zn/2 the following bound holds
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, 1/2 ≤ a1 ≤ 1. (4)

In particular, we get from (2)-(3)
Corollary 1. For any z > 0 the following inequality holds
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≤ (n+ 1)−M . (5)

Remark. It follows from (5) that if M ∼ eRn, R > 0, then S(z,M, n) ∼ Mzn/2 for any
z > 0 with very high probability.
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