M. V. Burnashev

ON THE DISTRIBUTION OF ONE STATISTICAL SUM FROM
INFORMATION THEORY

Assume that x;, j = 1,..., M, are independent and equiprobable binary n-vectors.
Denote by w; = w(x;), j = 1,...,M - the weight (i.e. the number of ones) of binary
n-vector {x;}. For 0 < z <1 consider the random sum

M
S(z, M,n) = 2", (1)
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The sum (1) arises often in information theory. Although all results below are non-asymptotic
in n, M, they are mostly oriented to the case n — oo and M = ef®, R > 0. Moreover, to
simplify formulas we do not use below integer parts signs

Theorem 1. 1) For 0 < z < 1 and 2™? < A < 1 the following bounds hold
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2) For 2" < A < 22 the following bound holds
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2) For 2 > 1 and 1 < A < 2™/2 the following bound holds
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In particular, we get from (2)-(3)
Corollary 1. For any z > 0 the following inequality holds
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Remark. It follows from (5) that if M ~ e, R > 0, then S(z, M,n) ~ Mz"/? for any
z > 0 with very high probability.




