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Let X (n) = (X1, . . . ,Xn) and U (n) = (U1, . . . ,Un) be independent, identically
distributed random p-vectors with bounded continuous densities f(x ) and g(u),
with distribution functions f F (x ), G(u), and Wj =I(Xj <Uj). We are observing
the sample {(Wj ,Uj), j = 1, .., n}. It is necessary to estimate the unknown distribution
function F (x ). Consider an estimate of F (x ) given by Fn(x ) = Fgn(x )/gn(x ),
where
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Fn(x ) = Fgn(x )/gn(x ), Rn = Rn(x ) is the Euclidean distance between x and kth
nearest neighbor of x among the Uj ’s, K(x ) is non-negative kernel, and k = k(n)
is a sequence of positive integers such that kn−4/5 = 1 + o(1) as n → ∞, Sr =
{z : ||z − x || < r}. Given a differentiable function F , let DαF denote the partial
derivative of F with respect xα. If F is twice continuously differentiable and K(x )
has finite second order moments let Q (K) (x ) =

∑
α,β

DαDβF (x )
∫
uαuβK (u) du .

Theorem. Let the function K(x) be bounded and assume that the functions F and g
are three times continuously differentiable with
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0. Further, let 1−P(Sr) = O(r−δ) for some δ > 0 as r → ∞. Consider a point x
with f(x) > 0 and f(x) continuously differentiable in a neighborhood of x. Then
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where Σ is the uniform distribution on the surface of the p-sphere of unit radius.
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