A REMARK ABOUT ITO'S FORMULA FOR WIENER PROCESS.

SMORODINA N.V.

We extend the classical Ito's formula for a smooth function V of the Wiener process to the case when $v = V' \in L_{2,loc}(R)$. We show that in this general case the Ito's correction term has a classical form if v' = V'' is treated in the sense of generalized function theory (in a distribution sense). Earlier, in [1], under the same conditions, another form of the correction term was obtained.

Theorem 1. Let $v \in L_{2,loc}(\mathbb{R})$, the function V is an antiderivative of v (V' = v), distribution v' is a derivative of v in a distribution sense. Let $\{v_{\varepsilon}\}$ be a family of absolute continuous functions such that for every N > 0 the condition $\lim_{\varepsilon \to 0} \|v_{\varepsilon} - v\|_{L_2[-N,N]} = 0$ holds. Under these conditions we have: 1. There exists $\lim_{\varepsilon \to 0+} \int_0^t v'_{\varepsilon}(w(\tau)) d\tau$ (in probability) and this limit does not depends on the family v_{ε} . For this limit we use the notation $\int_0^t v'(w(\tau)) d\tau$. 2. The Ito's formula is valid $V(w(t)) = V(w(0)) + \int_0^t v(w(\tau)) dw(\tau) + \frac{1}{2} \int_0^t v'(w(\tau)) d\tau$.

References

 H. Föllmer , Ph. Protter , A. N. Shiryayev, Quadratic Covariation and an Extension of Ito's Formula , *Bernoulli*, 1/2(1995), 149–169.

PDMI RAS, St.-Petersburg, MI RAS, Moscow, Russia. *E-mail address*: smorodina@pdmi.ras.ru

The work was supported by RSCF (project N_{2} 23-11-00375).