V. I. Afanasyev. Limit theorems for functionals of a branching process in random environment starting with a large number of particles¹

Let $\{Z_i^{(k)}, i \in \mathbf{N}_0\}$ be a branching process in a random environment $\{Q_i, i \in \mathbf{N}\}$, starting with k particles. Let $f_i(\cdot)$ be the generating distribution function Q_i . We set $X_i = \ln f'_i(1), \eta_i = f''_i(1) / (f'_i(1))^2$ and introduce the associated random walk $S_0 = 0, S_n = \sum_{i=1}^n X_i, n \in \mathbf{N}$. **Assumption A.** The random variable X_1 belongs without centering to

Assumption A. The random variable X_1 belongs without centering to the domain of attraction of some strictly stable law with index $\in (0, 2]$ and $((0, +\infty)) \in (0, 1)$.

Assumption B. For some $q > 0 \mathbf{E} \ln^{\alpha+q} (\eta_1 \vee 1) < +\infty$.

We set $U_n = \{S_{\lfloor nt \rfloor}, t \ge 0\}$. By Skorokhod's theorem, there exists such a positive numerical sequence $\{A_n, n \in \mathbf{N}\}$ that, as $n \to \infty$, $U_n/A_n \xrightarrow{D} U$, where $U = \{U(t), t \ge 0\}$ is a strictly stable Levy process with index $\alpha \in (0, 2]$.

We fix $x \in (0, +\infty)$. Suppose that $k = k_n$ and $\ln k_n \sim A_n x$ for $n \to \infty$. Let $T^{(k_n)}$ be the extinction time of the branching process $\left\{Z_i^{(k_n)}, i \in \mathbf{N}_0\right\}$ and $M^{(k_n)} = \max_{0 \le i < +\infty} Z_i^{(k_n)}, \Sigma^{(k_n)} = \sum_{i=0}^{\infty} Z_i^{(k_n)}$. We set $L(t) = \inf_{0 \le s \le t} U(s), M(t) = \sup_{0 \le s \le t} U(s)$ for $t \ge 0$ and $M_x = \sum_{i=0}^{\infty} Z_i^{(k_n)}$.

We set $L(t) = \inf_{0 \le s \le t} U(s)$, $M(t) = \sup_{0 \le s \le t} U(s)$ for $t \ge 0$ and $M_x = x + M(T_{-x})$. Let T_{-a} be the time of the first attaining of the set $(-\infty, -a]$, where a > 0, by the process $\{L(t), t \ge 0\}$.

Theorem. If the assumptions A, B are fulfilled, then, as $n \to \infty$,

$$\frac{T^{(k_n)}}{n} \xrightarrow{D} T_{-x}, \quad \frac{\ln M^{(k_n)}}{A_n} \xrightarrow{D} M_x, \quad \frac{\ln \Sigma^{(k_n)}}{A_n} \xrightarrow{D} M_x.$$

 $^{^1{\}rm This}$ work was supported by the Russian Science Foundation under grant no. 24-11-00037, https://rscf.ru/en/project/24-11-00037/