Azarina S.V. A formula for the second order backward mean derivaves

Let us consider stochastic processes $\xi(t)$, $\eta(t)$ on some probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with values in \mathbb{R}^n . These processes are L_1 variables for all $t \in [0, T]$. We denote by E_t^{η} the conditional expectation of the process $\eta(t)$ for the σ -algebra, generated by preimages of the borel sets for the $\eta(t) : \Omega \to \mathbb{R}^n$.

We call the backward mean derivative of the process $\xi(t)$ for the moment t the L_1 random variable $D^{\eta}_*\xi(t) = \lim_{\Delta t \to +0} E^{\eta}_t \left(\frac{\xi(t) - \xi(t - \Delta t)}{\Delta t}\right)$.

These derivative can be considered as the composition of the $\xi(t)$ and the borel vector field Z(t,x): $Z(t,x) = \lim_{\Delta t \to +0} E\left(\frac{\xi(t)-\xi(t-\Delta t)}{\Delta t}\Big|\eta(t)=x\right)$. Let Z(t,x) be a C^2 vector field of \mathbb{R}^n . The backward mean derivative of Z(t,x)

Let Z(t, x) be a C^2 vector field of \mathbb{R}^n . The backward mean derivative of Z(t, x)along $\xi(t)$ is the L_1 -random process $D^{\eta}_* Z(t, \xi(t)) = \lim_{\Delta t \to +0} E^{\eta}_t \left(\frac{Z(t, \xi(t)) - Z(t - \Delta t, \xi(t - \Delta t))}{\Delta t} \right)$.

Consider a Wiener process w(t) in \mathbb{R}^n as a process $\eta(t)$ and consider $\xi(t)$ as a solution of the stochastic differential Itô equation $d\xi(t) = a(t,\xi(t))dt + A(t,\xi(t))dw(t)$, where the drift a(t,x) and diffusion summand A(t,x) are the vector field and the field of linear operators in \mathbb{R}^n respectively.

We can prove the following statement using the backward Itô-Ventzell formula.

Theorem 1. We can compute the second order backward mean derivative $D^w_* D^w_* \xi(t)$ for the drift equals to 0, a(t) and a(t, x) and diffusion summand equals to A, Aw, A(t).