M.ILOLOV, J.SH.RAHMATOV, S.M.LASHKARBEKOV

National Academy of Sciences of Tajikistan

STOCHASTIC CAUCHY PROBLEM INVERSE TO THE CORRECT ONE

Let's *H* Hilbert space, $A: D(A) \subset H \to H$ – infinitesimal generator of strongly continuous semigroup $S(\cdot)$, W(t) - Q – Wiener process on $H_1 \supset H$ and $H_0 = Q^{1/2}H$, $U_0 - H$ -valued random variable.

Let's consider for the equation

$$dU(t) = (U(t))dt + B(U(t))dW(t), t \in [0, T]$$

initial problem

$$U(0) = U_0 \tag{1}$$

and the problem of finding on [0, T] of the solution by its value at the end of the segment:

$$U(T) = U_1 \in D(A).$$
⁽²⁾

Enter a new variable $\tau = T - t$ and denote $U(t) = U(T - \tau) = V(t)$ and we arrive at the Cauchy problem of the form

$$dV(t) = A(V(\tau)) - B(V(t)dW(\tau - T)), V(0) = U_1.$$
(3)

Let us call problem (2), or, what is the same, problem (3), the inverse problem for (1).

Along with the semigroup S(t), we define a stochastic convolution in the form

$$W_{A}^{\Phi}(t) = \int_{0}^{t} S(t-s)\Phi(s)dW(s), t \in [0,T],$$

where $\Phi - L_2^0$ – predictable process, and L_2^0 – space of all Hilbert-Schmidt operators from H_0 in H [1].

Theorem. Let there exists an operator $(\lambda I - A)^{-1}$ for at least one $\lambda \in \mathbb{C}$ and let there exist a stochastic convolution $W_A \Phi$ for some process $\Psi \in L_2^0$.

For the forward (1) and inverse problems (3) to be correct, it is necessary and sufficient that the conditions are satisfied

$$\|\mathcal{R}^{n}(\lambda)\| \leq \frac{\mathcal{M}}{(|Re\lambda| - \omega)^{n}}, |Re\lambda| > \omega.$$

REFERENCES

1. Prato G.D., Zabczyk J. Stochastic Equations in Infinite Dimensions – CUP (2014), 514 pages.