Asymtotics of empirical spectral distributions of structured random matrices

Tikhomirov A. N.

FRC "Komi Science Center of Ural Branch of RAS"

Let $\mathbf{X}^{(ij)}$, i, j = 1, ..., k a symmetric family of $n \times n$ symmetric real random matrices. We will assume that for any fixed pair of indices (i, j), i, j = 1, ..., k, the elements of the matrix $\mathbf{X}^{(i,j)}$ are independent (with respect to symmetry), have mean zero and finite variance, i.e.

$$\mathbb{E}X_{pq}^{(i,j)} = 0 \text{ and } \mathbb{E}(X_{pq}^{(i,j)})^2 = (\sigma_{pq}^{(i,j)})^2 < \infty.$$

About the matrices $\mathbf{X}^{(i,j)}$ we will assume that they either coincide at $(i,j) \neq (i_1, j_1)$ or are independent. Let the symbol \otimes denote the Kronecker product.

Consider a matrix of the form $\mathbf{W}_{\mathbf{X}} = \sum_{i,j=1}^{k} \mathbf{E}^{(i,j)} \otimes \mathbf{X}^{(i,j)}$, where $\mathbf{E}^{(i,j)}$ is a $k \times k$ matrix with all elements equal to zero except the (i, j)-th element equal to 1.

Let random variables $Y_{pq}^{(ij)}$ for any fixed $i, j = 1 < \ldots k, i \leq j$ be independent for $p, q = 1, \ldots, n, p \leq q$, and have the same first two moments as random variables $X_{pq}^{(ij)}$. Let $\mathbf{W}_{\mathbf{Y}} = \sum_{i,j=1}^{k} \mathbf{E}^{(i,j)} \otimes \mathbf{Y}^{(i,j)}$. We denote by $F_{n\mathbf{X}}(x)$ and $F_{n\mathbf{Y}}(x)$ the empirical spectral distribution functions of matrix $\mathbf{W}_{\mathbf{X}}$ and $\mathbf{W}_{\mathbf{Y}}$ respectively.

Theorem 1. We assume that there exists a constant C_0 such that for all $n \ge 1$

$$\frac{1}{(nk)^2} \sum_{i,j=1}^k \sum_{p,q=1}^n (\sigma_{pq}^{(i,j)})^2 \le C_0.$$

Suppose that for all i, j = 1, ..., k for random matrices $\mathbf{X}^{(ij)}$ and $\mathbf{Y}^{(ij)}$ the Lindeberg condition is satisfied. *i.e.*, for any $\tau > 0$

$$L_n(\tau) := \max\{\frac{1}{n^2} \sum_{r,s=1}^n \mathbb{E}(X_{rs}^{(ij)})^2 \mathbb{I}\{|X_{rs}^{(ij)}| > \tau \sqrt{n}\},\$$
$$\frac{1}{n^2} \sum_{r,s=1}^n \mathbb{E}(Y_{rs}^{(ij)})^2 \mathbb{I}\{|Y_{rs}^{(ij)}| > \tau \sqrt{n}\},\} \xrightarrow[n \to \infty]{} 0.$$

Then

$$F_{n\mathbf{X}}(x) - F_{n\mathbf{Y}}(x) \xrightarrow[n \to \infty]{} 0$$
 in probability