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The Third International Conference on Stochastic Methods (ICSM-3) was held
June 3–9, 2018 in the village of Divnomorskoe (near the town of Gelendzhik) at the
Raduga sports and fitness center of the Don State Technical University. Like ICSM-1
and -2, ICSM-3 was organized by the Steklov Mathematical Institute of RAS (Depart-
ment of Theory of Probability and Mathematical Statistics), Moscow State University
(Department of Probability Theory), and the Don State Technical University (Depart-
ment of Higher Mathematics), the main university of Rostov-on-Don. The conference
chairman was A. N. Shiryaev, a member of the Russian Academy of Sciences, who
also headed the Organizing Committee and the Program Committee.

Members of the conference committees were as follows. Organizing Commit-
tee: I. V. Pavlov (Deputy Chairman), A. V. Bulinski, M. V. Zhiltukhin, F. S. Nasy-
rov, T. B. Tolozova, V. V. Shamraeva, and E. Eberlein; Program Committee:
A. A. Gushchin (Deputy Chairman), Yu. E. Gliklikh, Yu. M. Kabanov, D. B. Rokhlin,
and V. V. Ulyanov. Organizational issues were solved at the conference by the Local
Organizing Committee: I. V. Pavlov (Chairman), A. G. Danekyants, N. P. Krasiy,
S. I. Uglich, and I. V. Tsvetkova.

In addition to scientists from Russia, scientists from the USA, France, Germany,
the Netherlands, Portugal, Saudi Arabia, Romania, Bulgaria, and Uzbekistan took
part in the conference. Eighteen lectures and 46 talks were given. The themes of the
lectures were as follows:

– E. Eberlein, Multiple curve interest rate modeling allowing for negative rates;
– Yu. Kabanov, On a multi-asset version on the Kusuoka limit theorem of option

superreplication under transaction costs;
– M. L. Esqúıvel, From an ordinary differential equation model to an open pop-

ulation Markov chain model, via stochastic differential equations; models for HIV
infection in individuals and populations;

– E. Lepinette, J. Baptiste, L. Carassus, Pricing without martingale measure;
– Yu. Gliklikh, Investigation of completeness of stochastic flows generated by

equations with current velocities;
– Ya. Belopolskaya, Systems of forward and backward nonlinear Kolmogorov

equations;
– N. Smorodina, Approximation of an evolution operator by mathematical ex-

pectations of functionals of Poisson random fields;
– F. Nasyrov, A deterministic approach to stochastic maximum principle;
– B. Dupire, Functional Itô calculus and characterization of attainable claims;
– M. Grigorova, Doubly reflected BSDEs and nonlinear Dynkin games: Beyond

right-continuity;
– S. Borovkova, Stochastic time change for asset price modeling;
– V. Ulyanov, Nonasymptotic estimates for the closeness of Gaussian measures

on the balls;

∗Originally published in the Russian journal Teoriya Veroyatnostei i ee Primeneniya, 64 (2019),
pp. 151–204.

http://www.siam.org/journals/tvp/64-1/T98942.html

124

D
ow

nl
oa

de
d 

05
/0

4/
19

 to
 4

6.
24

2.
14

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3RD INTERNATIONAL CONFERENCE ON STOCHASTIC METHODS 125

– A. Bulinski, Asymptotic behavior of entropy estimates;
–A. Gushchin, Joint distributions of increasing processes and their compensators,

single jump martingales, and the Skorokhod embedding;
– V. Afanasyev, Boundary problems for a random walk in a random environment;
–M. Platonova and K. Ryadovkin, A branching random walk on graphene lattice;
– A. Tikhomirov, Local limit theorems for random matrices;
– D. Rokhlin, Q-learning in a stochastic Stackelberg game.
The Organizing Committee arranged photo sessions of the participants and an

excursion to the village of Abrau-Durso and Pshad waterfalls.
Financial support from the Don State Technical University (B. Ch. Meskhi,

rector), the Russian Foundation for Basic Research (grant 18-01-20032-g), and the
Federal Agency for Scientific Organizations contributed immeasurably to the success
of the conference.

A. N. Shiryaev, I. V. Pavlov

Following are the abstracts of the talks and lectures given at the conference.

V. I. Afanasyev (Moscow, Russia). Boundary problems for a random
walk in a random environment. 1

Let {Xk, k � 0} be a random walk in a random environment. We assume that
the random environment is a sequence of i.i.d. random vectors (pi, qi), i ∈ Z, where
p0 + q0 = 1, p0 > 0, q0 > 0. By definition, this means that for a fixed random
environment, the sequence {Xk, k � 0} is a discrete Markov chain starting from 0 with
the set of states Z and transition probabilities pij such that pi,i+1 = pi, pi,i−1 = qi,
i ∈ Z.

Assume that

(1) E ln
q0
p0

= 0, E ln2
q0
p0

=: σ2, σ2 ∈ (0,+∞).

We set Tn = min{k ∈ N : Xk = n}, where n ∈ Z. The random variable lnTn, as
n→ ∞, is well studied. In particular, limit theorems are established for this variable
in both cases when condition (1) is satisfied and when E ln2(q0/p0) is infinite (see, for
example, [1]).

Consider a two-boundary problem concerning the first exit of the sequence {Xk,
k � 0} from the interval (−�an�, �bn�), where a, b > 0. The following results hold
(see [2]).

Theorem 1. If condition (1) holds and if a, b > 0, then

lim
n→∞P(T�bn� < T−�an�) =

2

π
arctan

√
a

b
.

Consider for x, y > 0 and k, l ∈ Z the triangle

Sk,l(x, y) =

{
(u, v) ∈ R2 :

u

x
+
v

y
� k + l + 1, u � kx, v � ly

}
.

1Supported by the Presidium of the Russian Academy of Sciences, project No. 01 “Fundamental
Mathematics and Its Applications” (grant PRAS-18-01).
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We set G(x, y) =
⋃

k,l∈Z S4k,2l+1(x, y), D(x, y) =
⋃

k,l∈Z S4k+2,2l+1(x, y). Let ξ1, ξ2
be independent random variables with a standard normal distribution. We set

F (x, y) = P
(
(ξ1, ξ2) ∈ G(x, y)

)
−P

(
(ξ1, ξ2) ∈ D(x, y)

)
.

Theorem 2. If condition (1) holds and if a, b > 0, then, for all x > 0,

lim
n→∞P

(
lnT�bn�
σ
√
n

< x

∣∣∣∣ T�bn� < T−�an�

)
= 2π

F (x/
√
b, x/

√
a)

arctan(
√
a/b)

.

REFERENCES

[1] V. I. Afanasyev, About time of reaching a high level by a random walk in a random environ-
ment, Theory Probab. Appl., 57 (2013), pp. 547–567.

[2] V. I. Afanasyev, Two-boundary problem for a random walk in a random environment, Theory
Probab. Appl., 63 (2019), pp. 339–350.

S. Albosaily (Rouen, France), S. Pergamenshchikov (Rouen, France; Tomsk,
Russia). Optimal investment and consumption for Ornstein–Uhlenbeck
spread financial markets with power utility.

We study an investment/consumption optimization problem for financial mar-
kets of Brownian motion type generated by the differences in risky financial assets
for investor who can trade in one risk-free bond and multiple stocks. The goal of
the investor is to allocate money in such a way that expected utility from terminal
wealth is maximized. The model of the financial market “spread” we use is driven by
Ornstein–Uhlenbeck processes

(1) dSt = −κSt dt+ σ dWt,

where Wt is the standard Wiener process and σ is the d × d volatility matrix. The
wealth process in this case is given by

(2) dXυ
t = (rXυ

t − κ1αtSt − ct) dt+ αtσ dWt,

where r is the interest rate, κ1 = κ+ r, υ = (αt, ct)0�t�T is the financial strategy, αt

is the investment in the risky asset (1), and ct is the consumption. This model was
proposed in [3] for a pure optimal investment of a one-dimensional problem. Several
studies used the notion of spread to examine the behavior of financial markets. For
example, for precious metals, the spread between gold and silver, and the spread
between the gold futures market and the U.S. Treasury bill futures market have been
examined [4]. Our goal is to maximize the following objective function:

(3) sup
υ∈V

Ex,s

(∫ T

0

cγu du+�(Xυ
T )

γ

)
,

where V is the set of all admissible financial strategies introduced in [1], �> 0 is some
fixed constant, and Ex,s is the conditional expectation with respect to Xυ

0 = x and
S0 = s. For this problem, similarly to [2], we use the stochastic dynamic program-
ming method and the Feynman–Kac representation. The main result is the following
theorem.
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Theorem 1. Assume that � � (16T/π)1−γ and 0 < γ < 1/4; then the HJB
equation {

zt(ς, t) +H
(
ς, t, ∂z(ς, t), ∂2z(ς, t)

)
= 0, t ∈ [0, T ],

z(ς, T ) = h(x),
ς = (x, s),

has the solution defined by

z(ς, t) = �xγU(s, t) and U(s, t) = exp

{
1

2
s2g(t) + Y (s, t)

}
,

where Y is a unique solution in X of

ΨY (s, t) =
1

2
γY 2

s (s, t) +
1

2
σ2g(t) + rγ

+ (1− γ)�1/(γ−1) exp

{
− 1

1− γ

(
1

2
s2g(t) + Y (s, t)

)}
= 0

and is the fixed point for the Feynman–Kac mapping, i.e., Y = LY .

By making use of this theorem the optimal investment and consumption strategies
are found.

REFERENCES

[1] S. Albosaily and S. Pergamenshchikov,Optimal Investment and Consumption for Ornstein–
Uhlenbeck Spread Financial Markets with Power Utility, preprint, arXiv:1712.04333v1, 2017.

[2] B. Berdjane and S. Pergamenchtchikov, Optimal consumption and investment for markets
with random coefficients, Finance Stoch., 17 (2013), pp. 419–446.

[3] M. Boguslavsky and E. Boguslavskaya, Arbitrage under power, Risk, June 2004, pp. 69–73.
[4] M. A. Monroe and R. A. Cohn, The relative efficiency of the gold and treasury bill futures

markets, J. Fut. Mark., 6 (1986), pp. 477–493.

U. A. Alekseeva (Ekaterinburg, Russia). On a relation between Brownian
sheet, Q-Wiener, and cylindrical Wiener processes. 2

We are concerned with the problem of small transverse oscillations of a string un-
der the influence of external random impulses. It is shown that the process describing
external influences is a Brownian sheet {W (t, x), t � 0, x ∈ [0, l]}, i.e., a Gaussian
random two-parameter function with zero mean and with Cov(W (t1, x1),W (t2, x2)) =
min{t1, t2}min{x1, x2} (see [1]). It is proved that the Brownian sheet is a Q-Wiener

process in H = L2[0, l] with (Qh)(x) =
∫ l

0
K(x, y)h(y) dy, where K(x, y) = min{x, y},

and that its derivative ∂W (t,x)
∂x is a cylindrical Wiener process in H (see [2], [3]). The

problem of oscillations leads to the stochastic equation

ut(t, x) − g(x) = a

∫ t

0

∂2u(τ, x)

∂x2
dτ + b

∂W (t, x)

∂x
.

We also discuss the problem of weak and strong solvability of this equation in the
space H .

2Supported by the Ministry of Higher Education and Science of the Russian Federation (project
02.A03.21.0006.)
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[2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2nd ed., Ency-
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A. S. Asylgareev (Ufa, Russia). On comparison of solutions of stochastic
differential equations driven by a multidimensional Wiener process.

Consider two stochastic differential equations (hereinafter SDEs) with Stratono-

vich integrals driven by a multidimensional Wiener processW
(n)

t = (W
(1)
t , . . . ,W

(n)
t ),

which is defined on a filtered probability space (Ω,F , (Ft)t�0,P),

(1) dξ
(n)
k (t) =

n∑
j=1

σ
(n)
kj

(
t, ξ

(n)
k (t)

)
∗ dW (j)

t + b
(n)
k

(
t, ξ

(n)
k (t)

)
dt, k = 1, 2.

The purpose of the present study, which continues the paper [1], is a proof of
comparison theorems for equations (1) in the case when the diffusion coefficients
of the compared equations can be different. The classical comparison theorem for
SDEs was proved by Skorokhod [2] for one-dimensional equations with Itô integral.
The result of [2] was extended by Geiss and Manthey in [3] for the Itô’s equations
driven by multidimensional Wiener process, but in [3] the authors required that the
diffusion coefficients of the equations under the corresponding components of the
multidimensional Wiener process should coincide.

The approach used here is based on the fact that solutions of (1) can be repre-

sented in the form ξ
(n)
k (t)= D̂

(n)
k

(
t,W

(n)
t +D

(n−1)
k (t,W

(n−1)

t )
)
, where D̂

(n)
k (t, u) are

deterministic functions, and ξ
(n−1)
k (t) = D

(n−1)
k (t,W

(n−1)

t ) are solutions of the SDE
driven by an (n− 1)-dimensional Wiener process. The main result is the following.

Theorem 1. Assume that the following conditions are satisfied for all t � 0,
j = 1, . . . , n:

(1) σ
(j)
2j (t, v) > 0 for all v ∈ R;

(2) D̂
(j)
2 (t, u) � D̂

(j)
1 (t, u) for all u ∈ R;

(3) D
(0)
2 (t) � D

(0)
1 (t) with probability 1.

Then ξ
(n)
2 � ξ

(n)
1 for all t � 0 a.s.

Theorem 1 can be reformulated for the equations with the Itô integral because
there is a transition formula between the Itô and Stratonovich integrals, which is valid
under sufficient smoothness of the coefficients b and σ.

REFERENCES

[1] A. S. Asylgareev and F. S. Nasyrov, Theorems of comparison and stability with proba-
bility 1 for one-dimensional stochastic differential equations, Siberian Math. J., 57 (2016),
pp. 754–761.

[2] A. V. Skorokhod, Studies in the Theory of Random Processes, Addison-Wesley Publishing
Co., Inc., Reading, MA, 1965.

[3] C. Geiß and R. Manthey, Comparison theorems for stochastic differential equations in finite
and infinite dimensions, Stochastic Process. Appl., 53 (1994), pp. 23–35.
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V. S. Barbu, S. Beltaief, S. Pergamenshchikov (LMRS, University of Rouen
Normandy, France). Robust adaptive efficient estimation for a semi-Markov
continuous time regression from discrete data [1], [2]. 3

In this work we consider the nonparametric robust estimation problem for regres-
sion models in continuous time with semi-Markov noises, and we are interested in
estimating an unknown function S on the basis of observations that can be in con-
tinuous or discrete time. This problem of nonparametric estimation in regression
models is an important chapter of theoretical and applied statistics that has been
considered in many frameworks. Our main goal is to develop nonparametric adap-
tive robust estimation, with the noise process with large dependence; to this end, we
use a particular case of semi-Markov processes to model the dependent noises. The
semi-Markov regression model in continuous time introduced in [1] is given by

(1) dyt = S(t) dt+ dξt, 0 � t � n,

where S( · ) is an unknown 1-periodic function defined on R with values on R, (ξt)t�0

is the unobserved noise process ξt = 1Lt + 2zt, where 1 and 2 are unknown coef-
ficients, (Lt)t�0 is a Lévy process, while (zt)t�0 is a particular case of a semi-Markov

process (see, e.g., [3]) defined as zt =
∑Nt

i=1 Yi, where (Yi)i�1 is an i.i.d. sequence
of random variables with EYi = 0, EY 2

i = 1, and EY 4
i < ∞. Here Nt is a general

counting process defined as Nt =
∑∞

k=1 1{Tk�t} with Tk =
∑k

l=1 τl, where (τl)l�1 is
an i.i.d. sequence of positive integrated random variables with mean Eτ1 > 0. We as-
sume that the processes (Nt)t�0 and (Yi)i�1 are independent of each another and are
also independent of (Lt)t�0. Our problem is to estimate the unknown function S in
the model (1) on the basis of observations (ytj )0�j�np, tj = jΔ, Δ = 1/p, where the
integer p � 1 is the observation frequency. We construct a series of estimators by proj-
ection and thus approximate the unknown function by a finite Fourier series. As we
consider the estimation problem in an adaptive setting, i.e., in the situation when the
regularity of the function is unknown, we develop a new adaptive method based on the
model selection procedure proposed by Konev and Pergamenshchikov (2012). First,

this procedure gives us a family of weighted least squares estimators Ŝλ, where the
weight vector λ = (λ(1), . . . , λ(n)) belongs to some finite set Λ from [0, 1]n. Second,

we choose the best possible one by minimizing a cost function, λ̂ = argminλ∈Λ Jn(λ),

where Jn is a cost function that we consider. Using this weight coefficient λ̂ in Ŝλ

leads to the model selection procedure Ŝ∗ = Ŝλ̂. Under general moment conditions
on the noise distribution, we prove that there exists some constant l∗ > 0 such that
for any noise distribution Q and weight vector set Λ, for any periodic function S and
for any n � 1, p � 3, and 0 < δ � 1/6, we have the sharp nonasymptotic oracle
inequality

RQ(Ŝ∗, S) �
1 + 3δ

1− 3δ
min
λ∈Λ

RQ(Ŝλ, S) + l∗
σQν

δn
,

where RQ(S̃n, S) = EQ,S‖S̃n − S‖2 is the quadratic risk. We also prove the same

type of oracle inequality for the robust risk R∗
n(S̃n, S) = supQ∈Qn

RQ(S̃n, S).

3Partially supported by RSF grant 14-49-00079 (National Research University “MPEI,” Moscow,
Russia), RFBR grant 16-01-0012, and the project Complex Systems, Territorial Intelligence and
Mobility–Federation within the Large Scale Research Network Logistics–Mobility–Digital Informa-
tion from the Region of Normandy, France.
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Ya. I. Belopolskaya (St. Petersburg Department of Steklov Mathematical Insti-
tute of Russian Academy of Sciences, St. Petersburg, Russia). Systems of forward
and backward nonlinear Kolmogorov equations. 4

Systems of forward and backward nonlinear parabolic equations arise as mathe-
matical models of various phenomena in physics, chemistry, biology, and many other
fields. From the PDE point of view, the main difference between forward and back-
ward systems is the fact that, commonly, forward systems have to be treated as sys-
tems with respect to measures (or their densities), while the backward systems should
be treated as systems of equations with respect to functions. From the probabilistic
point of view, this means that systems of the first type correspond to systems of for-
ward Kolmogorov equations [1], [2], while systems of the second type correspond to
systems of backward Kolmogorov equations [3], [4]. In this talk, we discuss the prob-
abilistic interpretation of several systems of forward Kolmogorov equations—namely
the MHD–Burgers system and the Brusselator system as particular cases of the form

(1)
∂uk
∂t

+ div f(u) =
σ2
k

2
Δu, uk(0, x) = u0k(x),

as well as nonlinear parabolic systems with cross-diffusion. For such systems, we
construct a generalized solutions to the Cauchy problem in terms of the corresponding
random processes and their multiplicative functionals [1], [2]. Moreover, we show that
the Cauchy problem for such systems can be reduced to a closed stochastic system,
which can be applied for construction of a numerical solution to the original problem.
In particular, for the MHD–Burgers system, we have f(u) = (u1u2, (u

2
1 + u22)/2)

∗,
and the corresponding stochastic system has the form

dξ̂k(θ) = −σk dw(θ), ξ̂k(0) = x,(2)

dη̃k(θ) = Ck
u(ξ̂(θ))η̃(θ) dw(θ), η̃k(0) = 1,(3)

uk(t, x) = Eη̃k(t)u0k(ξ̂); k = 1, 2.(4)

Theorem 1. (1) Assume that there exists a regular generalized solution to the
Cauchy problem for the the MHD–Burgers system. Then this solution admits a sto-
chastic representation of the form (4).

(2) Let u0k > 0 and ∇u0k ∈ L2. Then there exists an interval [0, T ] such that, for
all t ∈ [0, T ], there exists a unique solution of system (2)–(4). Moreover, the function
uk(t, x) of form (4) satisfies the Cauchy problem for the MHD–Burgers system in the
sense of Schwartz distribution theory.

4Supported by the Russian Science Foundation (grant 17-11-01136).
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We also discuss the probabilistic interpretation of the Cauchy problem solutions
for parabolic systems with cross-diffusion [3], [4].
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2014, pp. 47–55.
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V. A. Bovkun (Ekaterinburg, Russia). Connection between infinite-dimen-
sional stochastic problems and deterministic problems for probabilistic
characteristics.

We consider the Cauchy problem for the infinite-dimensional stochastic equation

(1) X(t) = ξ +

∫ t

0

A (s,X(s)) ds+

∫ t

0

B(s,X(s)) dW (s), t ∈ [0, T ],

with an operator A = A (t, x) = Ax + F (t, x), t ∈ [0, T ], x ∈ H , where A is the
generator of a C0-semigroup in a Hilbert space H , F : [0, T ]×H → H and B : [0, T ]×
H → H are (in general) nonlinear mappings, {W (t), t � 0} is an H-valued Q-Wiener
process with respect to the filtration {Ft, t � 0} on a probability space (Ω,F ,P), and
ξ is an F0-measurable H-valued random variable. It is known that under additional
requirements on F and B, there is a unique Markov process {X(t), t � 0} which is
a mild solution of the problem (see, for example, [1]).

In [2], first, a connection between the global moments of the first and second
orders of the mild solution and the coefficients of the stochastic equation (1) was es-
tablished. Second, under the assumption of continuity of the trajectories of the process
{X(t), t � 0} and the existences of its local moments, infinite-dimensional analogues
of the direct and inverse Kolmogorov equations for the probabilistic characteristics of
the process were obtained. In this talk, we prove that the process {X(t), t � 0} has
continuous trajectories and finite local moments of the first and second orders which
coincide with the corresponding global moments. The following result holds.

Theorem. Let A be a generator of a C0-semigroup of operators, and let mappings
F and B be continuous in t on [0, T ] and satisfy the Lipschitz condition and the
sublinear growth condition. Also let δ > 0, and let f be a bounded twice Fréchet
differentiable functional on H. Then, for any x ∈ D(A),

P(t+Δt, y | t, x) = o(Δt), ‖y − x‖H > δ,∫
‖y−x‖H�δ

f ′(x)(y − x)P(t +Δt, dy | t, x) = f ′(x)A (t, x)Δt + o(Δt),∫
‖y−x‖H�δ

f ′′(x)[y − x]2P(t+Δt, dy | t, x)= Tr[f ′′(x)B(t, x)QB∗(t, x)]Δt+ o(Δt),

where P(t′,B | t, x) is the transition probability of the mild solution {X(t), t � 0}.
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A. V. Bulinski (Moscow, Russia). Asymptotic behavior of entropy esti-
mates. 5

The concept of entropy is fundamental in physics and mathematics. Significant
contributions to the development of this notion were made by L. Boltzmann, J. Gibbs,
M. Plank, C. Shannon, A. N. Kolmogorov, Ya. G. Sinai, A. Rényi, C. Tsallis, and
A. S. Holevo. We are mainly concerned with statistical estimates of the Shannon differ-
ential entropy. For applications, see, e.g., [1], [2]. There are mutually complementary
approaches to entropy estimation. We refer, e.g., to the works by L. F. Kozachenko
and N. N. Leonenko (1987), P. Hall and S. C. Morton (1993), A. B. Tsybakov and
E. C. Van der Meulen (1996), E. G. Miller (2003), L. Paninski (2003), D. Stow-
ell and M. D. Plumbley (2009), K. Sricharan et al. (2013), E. Archer et al. (2016),
A. Charzyńska and A. Gambin (2016), and S. Delattre and N. Fournier (2017).

In parallel with out survey in this field, we consider recent studies [3], [4].
Let X,X1, X2, . . . be a sequence of i.i.d. random vectors with values in the
space R

d and having density f w.r.t. the Lebesgue measure μ. Recall that the
well-known Kozachenko–Leonenko estimates of the Shannon differential entropy
H(X) := −

∫
Rd f(x) log f(x)μ(dx) have, for N ∈ N (N > 1), the form

HN := d log ρN + logVd + γ + log (N − 1),

where ρN := (ρ1,N · · · ρN,N)1/N , ρi,N is the Euclidean distance from Xi to its nearest
neighbor in the sample {X1, . . . , XN} \ {Xi}, and γ := −

∫
(0,∞) e

−t log t dt ≈ 0.5772

and Vd := πd/2/Γ(d/2+ 1) are the Euler constant and the volume (i.e., the Lebesgue
measure) of the unit ball in R

d, respectively. Under wide conditions (involving
an analogue of the Hardy–Littlewood maximal function), it was proved in [3] that
limN→∞ EHN = H(X). It was also established in [3] that, under wide conditions,
limN→∞ E(HN − H(X))2 = 0. In particular, these assertions also hold for any
nondegenerate Gaussian vector X . The above results are noteworthy, since, e.g.,
in [6] it was indicated that the available proofs of the asymptotical unbiasedness and
L2-consistency of HN , as proposed in various papers of other authors, should be
corrected.

We next turn to the new statistical estimates of the conditional Shannon entropy,
which were introduced in [4]. The mixed-pair model (X,Y ) is studied, where X
and Y take values in R

d and an arbitrary finite set M , respectively. Such models
cover, e.g., the logistic regression. In contrast to the Kozachenko–Leonenko estimates
of the unconditional entropy, the estimates proposed here are constructed by means
of certain kN -nearest neighbor statistics (N is the sample cardinality) and a random
number of observations contained in certain balls with random centers and random
radii. The asymptotic unbiasedness and L2-consistency of the new estimates are also

5Supported by the Russian Science Foundation (grant 14-21-00162) at the Steklov Mathematical
Institute.
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established under simple conditions. Unlike [5], our construction does not call for the
existence of a topological structure in a set M .
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A. E. Chistyakov (Rostov-on-Don, Russia). Stochastic modeling of turbu-
lent flows in coastal systems on a supercomputer. 6

Stochastic methods are often used for describing turbulent flows in waters, various
fluctuating values being considered as random functions. The turbulence on dissipa-
tive scales has involved statistical structure due to strong intermittency. Field studies
of coastal systems were performed on an example of the Azov Sea. As a result, data
on water velocity pulsations in certain water body points were obtained using the
WHS600 Sentinel ADCP (Acoustic Doppler Current Profiler) [1].

The correlations of the products of deviations of the flow velocity components are
as follows:

KZZx(z) = −u′w′
/

∂u(z)

∂z
, KZZy(z) = −v′w′

/
∂v(z)

∂z
,

ν(z) ≡ KZZ(z) =
√
K2

ZZx +K2
ZZy,

where ν(z) is the coefficient of turbulent exchange, and u′, v′, w′ are the pulsations of
velocity vector components.

A stochastic model was developed and numerically implemented on a multipro-
cessor computer system for calculation of the vertical turbulent exchange coefficient
in a coastal system on an example of the Azov Sea. The model is based on the def-
inition of turbulent flows as space-averaged (correlation) multiplication of deviations
of flow velocities components and a transported physical quantity. A numerical ex-
periment showed that the mechanisms of vertical turbulent exchange are suppressed
on large scales of vertical grids in numerical simulation of hydrodynamic processes of
the coastal system.

REFERENCES

[1] A. I. Sukhinov, A. E. Chistyakov, and E. V. Alekseenko, Numerical realization of the
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6The work was performed according to the R&D theme no. 2.6905.2017/BCh in the framework
of the state contract with the Russian Ministry for Education and Science.
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E. G. Chub (Rostov-on-Don, Russia). Synthesis of a stochastic control-
lable information-measuring complex.

Consider the stochastic model of the gyrostabilizer of the information-measuring
complex on a perturbed base in the observer–object form [1], [2]

Ẏ = F1(Y, t) + F2(Y, t)ζ + F3M(Za), Z = H(Y, t) +Wa,

where Y = (α, β, γ, wT)T is the state vector; α, β, γ are turning angles; w is the
vector of random overloads perturbing the base of the gyrostabilizer along the cor-
responding axes, as described in the general case by a system of stochastic nonlinear
differential equations in the form of Langevin ẇ = Fw(w, t) + ξ; ξ is white Gaussian
noise (WGN) with zero expectation and a known intensity matrix; F1, F2, F3, H are
known functions; ζ = (W, ξ)T;W are perturbations acting on the gyrostabilizer, which
are approximated in the general case by a WGN with zero expectation and a known
intensity matrix;M(Za) is the vector of control moments, as formed from the readings
of accelerometers; and Wa is the accelerometer interference vector, as approximated
in the general case by a WGN with zero expectation and a known intensity matrix. To
determine the current vector function of control moments that ensures the minimum
deviation of the trihedron of the gyroscopic coordinate system with respect to the
astronomical coordinate system with minimal costs for the formation of the control
vector, we introduce the criterion function Θ = α̂2 + β̂2 + γ̂2 +

∫ t

0 M
TQM dx, where

α̂, β̂, γ̂ are estimates of the turning angles, and Q is a weight matrix. Then the
suboptimal vector of control moments can be found as follows:

M = −Q−1NΦT(β̂, γ̂)(α̂, β̂, γ̂)T;

here, N , Φ are known matrices. In this case, the computational costs of synthesizing
the control vector are determined mainly by the costs of integrating the system of
equations, which can easily be realized by calculators of the information-measuring
complex [2].
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A. G. Danekyants, N. V. Neumerzhitskaia (Rostov-on-Don, Russia). Gen-
eralization of a result on the existence of weakly interpolating martingale
measures. 7

Let Ω = {ω1, ω2, . . . } be a countable set, F0 = {Ω,∅}, and F1 be the set of all
subsets of Ω. Consider a process Z = (Zk,Fk)

1
k=0 and denote a := Z0, bi := Z1(ωi),

i = 1, 2, . . . . Let F = (Fk)
1
k=0, and let P(Z,F) be the set of probability measures P

on (Ω,F ) such that P (ωi) > 0, i = 1, 2, . . . , and the process Z = (Zk,Fk, P )
1
k=0

is a martingale. We suppose that P(Z,F) = ∅. We are interested in the question
of the existence in the set P(Z,F) of the so-called weakly interpolating martingale

7Supported by the Russian Foundation for Basic Research (grant 16-01-00184).
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measures, which are defined as follows. Let {n1, n2, . . . } be a transposition of the
sequence 1, 2, . . . , and let G0 = {Ω,∅}, Gi = σ{ωn1 , ωn2 , . . . , ωni}. It is clear that
G∞ = F1. A measure P ∈ P(Z,F) is called a weakly interpolating martingale
measure (see [1], [2]) if, for any such permutation, the process Yi = EP [Z1 | Gi],
i = 1, 2, . . . , admits a unique martingale measure in P(Z,F) (which is automatically
equal to P ). Such measures P make it possible to interpolate incomplete financial
markets into complete ones and, therefore, to construct perfect hedges. In proving the
existence of such measures, there are two fundamentally different cases to consider:
(1) the sequence {bi}∞i=1 contains a finite number of different values [1] (a new result
in this direction is presented in the abstracts of I. V. Pavlov and I. V. Tsvetkova at
ICSM-3); (2) this sequence contains a countable number of different values [2]. Under
condition (2) we proved the following.

Theorem. Let a be an irrational number, and a sequence {bi}∞i=1 contain only
a finite number of irrational numbers, while the other terms are rational. If {bi}∞i=1

does not contain a finite collection {bij}kj=1 such that a = d0 + d1bi1 + · · ·+ dkbik for
some rational numbers d0, d1, . . . , dk, then the set P(Z,F) contains weakly interpo-
lating martingale measures.

Note that in the case when all {bi}∞i=1 are rational, we obtain the result of [2].

REFERENCES

[1] I. V. Pavlov, V. V. Shamrayeva, and I. V. Tsvetkova, On the existence of martingale
measures satisfying the weakened condition of noncoincidence of barycenters in the case of
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Dupire B. (New York, USA). Functional Itô calculus and characterization
of attainable claims [1].

Path dependence is of paramount importance in finance as it can be present in
the dynamics of the assets or in the definition of claim payoffs. We first review the
functional Itô calculus which is the framework needed for path dependence and allows
for the extension of many results to the non-Markov case. We show that it is possible
to characterize which contingent claims can be replicated by either

(1) a dynamic trading of the underlying asset,
(2) a static position in European options, or
(3) a combination of the former two.
We show that the answer lies in the properties of the intrinsic value functional,

which attributes to each asset price path up a current date before maturity the payoff
obtained by freezing the asset price until maturity. More precisely, it depends on the
behavior of the second functional space derivative of the intrinsic value.

We illustrate the power of the result by applying the associated algorithm to
a variety of path dependent claims.

REFERENCES
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E. Eberlein (Freiburg, Germany). Multiple curve interest rate modeling
allowing for negative rates [1], [2].

The global financial crisis which began in August of 2007 had a lasting effect on
financial markets. In particular, the fixed income markets changed in a fundamental
way. As a consequence of a new perception of risk, a number of interest rates, which
until then had been roughly equivalent, drifted apart. The basic rates, which are
relevant for the interbank market, became tenor-dependent after market participants
became aware of credit, liquidity, and funding risks in this market segment. These
risks had been assumed to be negligible. In the new reality, classical modeling ap-
proaches, which are based on arbitrage considerations assuming tenor independence,
can no longer reflect the market behavior. More sophisticated approaches, so-called
multiple curve models, are needed to take the increased diversity of risks into account.

We develop a multiple curve forward process as well as a multiple curve forward
rate (HJM-type) model. In both approaches, time-inhomogeneous Lévy processes are
used as drivers. Negative interest rates are taken into account in a natural way. We
derive valuation formulas for standard interest rate financial products such as caps,
floors, swaptions, and digital interest rate options. A number of calibration results
is presented where we also consider data in the setting of a two price economy, thus
exploiting explicitly bid and ask quotes.

This project is a joint work with Christoph Gerhart (Freiburg) and Zorana Grbac
(Paris).
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M. L. Esqúıvel (New University of Lisbon, Portugal). From an ordinary
differential equation model to an open population Markov chain model, via
stochastic differential equations; models for HIV infection in individuals
and populations [1], [2], [3]. 8

We present an initial exploration of a method for the association of an open
population Markov chain model—with a finite number of states—to some phenomena
that may be, by force of its intrinsic characteristics, best modeled by an ODE, at least
in some average sense. The ODE model presented here is formulated as a dynamic
change between two regimes; one regime is of mean reverting type and the other is
of inverse logistic type. For the general purpose of defining an open Markov chain
model for a human population, we associate an Itô process to the ODEs by means
of the addition of Gaussian noise terms which may be thought to model nonessential
characteristics of the phenomena with small and undifferentiated influences. The next
step consists of discretizing the Itô processes and using the sequence of values obtained
to define, by simulation, trajectories that, in turn, may define transitions of a finite
valued Markov chain if the state space of the Itô process is partitioned according to
some rule. We detail the application of these ideas to the study of the evolution of

8Partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e
Aplicações).
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a Portuguese population newly diagnosed with HIV. For that purpose the state space
of the Itô process is partitioned in six infection classes. We detail the evolution of
the population in these classes under two different projections for the evolution of
the newly diagnosed cases. The method presented here connects the model for the
evolution of the HIV viral load and the CD4 leucocytes count to a Markov chain open
model for the Portuguese HIV-diagnosed population.

REFERENCES
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Yu. E. Gliklikh (Voronezh, Russia). Investigation of completeness of sto-
chastic flows generated by equations with current velocities. 9

This is a joint talk with T. A. Shchichko. The main purpose of the talk is to find
conditions (sufficient, and necessary and sufficient) for completeness of the stochastic
flow generated by an equation given in terms of the so-called current velocities (the
Nelson symmetric mean derivatives).

The preliminaries can be found in [1], [2], [3], [4].
Let a Borel vector field v(t, x) and a field of symmetric nonnegative semidefinite

matrices α(t, x) be given on R
n. The equation with current velocities (the Nelson

symmetric mean derivatives) is a system in R
n of the form

(1)

{
DSξ(t) = a(t, ξ(t)),

D2ξ(t) = α(t, ξ(t)),

where DS is the symmetric mean derivative (current velocity) and D2 is the quadratic
mean derivative. According to [5], if a and α are smooth and satisfy (together with
the first derivatives of the field α) Itô-type estimates, α is positive definite, and the
initial value is a random variable with density that is smooth and nowhere vanishes,
then (1) has a well-posed solution for t ∈ [0,∞). Our purpose is to find conditions
for the existence of a solution for t ∈ [0,∞) (completeness of the flow) without the
requirement that the Itô-type estimates be satisfied.

Recall that a function ϕ : Rn → R is called proper if the preimage ϕ−1(K) of any
relatively compact set in R is relatively compact in R

n.

Theorem 1. Let a smooth positive proper function ϕ exist on R
n such that

L (t, x)ϕ < C for a certain C > 0 for all t ∈ R, x ∈ Rn, where L is the gener-
ator of flow ξ(s). Then the flow ξ(s) is complete.

Theorem 2. Let a smooth positive proper function u exist on R
n such that

L̃ u < C for a certain constant C > 0, where L̃ is the generator of inverse flow η̃(t).
Then the forward flow η(t) is continuous at infinity on [0, T ].

Consider the direct product Rn
+ = [0, T ]×Rn.

9Supported by the Russian Foundation for Basic Research (grant 18-01-00048).
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Theorem 3. A necessary and sufficient condition needed for both the forward
flow ξ(s) and the inverse flow ξ̃(s), as generated by equation (1), to be both continuous
at infinity and complete on [0, T ] is that there exist smooth positive proper functions
u(t, x) and ũ(t, x) on R

n
+ such that the inequalities (∂/∂t+ A )u < C and (−∂/∂t+

Ã )ũ < C̃ be satisfied for some positive constants C and C̃, where A and Ã are
generators of the forward and inverse flows, respectively.
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[1] E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev.,
150 (1966), pp. 1079–1085.

[2] E. Nelson, Dynamical Theories of Brownian Motion, Princeton Univ. Press, Princeton, NJ,
1967.

[3] E. Nelson, Quantum Fluctuations, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ,
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[4] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics,
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[5] S. V. Azarina and Yu. E. Gliklikh, On the solvability of nonautonomous stochastic differ-
ential equations with current velocities, Math. Notes, 100 (2016), pp. 3–10.

M. Grigorova (Bielefeld University, Germany). Doubly reflected BSDEs
and nonlinear Dynkin games: Beyond right-continuity [1], [2], [3].

We formulate a notion of a doubly reflected backward stochastic differential equa-
tion (DRBSDE) with standard Lipschitz driver g in the case where the lower barrier
ξ and the upper barrier ζ are completely irregular. To simplify the presentation,
we place ourselves in the case of a Brownian filtration. The given processes ξ and
ζ are optional (not necessarily right-continuous) with ξ � ζ and ξT = ζT and such
that E(ess supτ∈T0

ξ2τ ) < ∞ and E(ess supτ∈T0
ζ2τ ) < ∞. Here T0 denotes the set of

stopping times such that 0 � τ � T a.s., where T > 0 is a fixed terminal horizon.
The solution of the DRBSDE with parameters (g, ξ, ζ) is a process with six compo-
nents (Y, Z,A,C,A′, C′). In comparison with the case of right-continuous barriers ξ
and ζ, in our general case there is an additional “push-up” process C and an addi-
tional “push-down” process C′ (which satisfy suitably defined minimality conditions
or Skorokhod-type conditions). After defining the DRBSDE, we prove the following
two theorems.

Theorem 1. (i) There exists a solution to the DRBSDE with parameters (g, ξ, ζ)
if and only if the so-called Mokobodzki condition is satisfied; that is, there exist two
nonnegative strong supermartingales H and H ′ such that ξ � H −H ′ � ζ.

(ii) If a solution to the DRBSDE exists, it is unique.

We denote by E g the nonlinear g-expectation induced by the (nonreflected) BSDE
with driver g. We consider the nonlinear Dynkin game with g-expectation and payoff
processes ξ and ζ. The upper value V and lower value V of the game are defined by

V (0) := inf
σ∈T0

sup
τ∈T0

E g
0,τ∧σ[ξτ1τ�σ + ζσ1σ<τ ],

V (0) := sup
τ∈T0

inf
σ∈T0

E g
0,τ∧σ[ξτ1τ�σ + ζσ1σ<τ ].

Theorem 2. We assume that ξ and −ζ are right-uppersemicontinuous (but not
necessarily right-continuous) and satisfy Mokobodzki’s condition. Then, the above
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nonlinear Dynkin game has a value, that is, V (0) = V (0). Moreover, this common
value coincides with Y0, where Y is the first component of the solution of the DRBSDE
with parameters (g, ξ, ζ).

If ξ and ζ are not right-uppersemicontinuous, the above nonlinear Dynkin game
problem might not have a value. In this case, we formulate an “extension” of the
above game over a set of “stopping strategies” larger than the set of stopping times
and show that the solution Y of the DRBSDE is equal to the value of the “extended”
game. This characterization then proves useful in establishing a comparison result
and a priori estimates with universal constants for the DRBSDE.

The talk is based on a joint work with P. Imkeller, Y. Ouknine, and M.-C. Quenez.
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[1] M. Grigorova, P. Imkeller, E. Offen, Y. Ouknine, and M.-C. Quenez, Reflected BSDEs
when the obstacle is not right-continuous and optimal stopping, Ann. Appl. Probab., 27 (2017),
pp. 3153–3188.

[2] M. Grigorova, P. Imkeller, Y. Ouknine, and M.-C. Quenez, Optimal Stopping with
f-Expectations: The Irregular Case, preprint, arXiv:1611.09179, 2018.

[3] M. Grigorova, P. Imkeller, Y. Ouknine, and M.-C. Quenez, Doubly Reflected BSDEs and
E f -Dynkin Games: Beyond the Right-Continuous Case, preprint, arXiv:1704.00625, 2018.

A. A. Gushchin (Steklov Mathematical Institute, Moscow, Russia). Joint
distributions of increasing processes and their compensators, single jump
martingales, and the Skorokhod embedding. 10

Let us denote by W
∗ the class of all Borel probability measures μ = μ(dx, dy)

on R
2
+ satisfying∫

xμ(dx, dy)=

∫
y μ(dx, dy) and

∫
{y�λ}

xμ(dx, dy)�
∫
(y∧λ)μ(dx, dy) ∀λ� 0.

If, additionally, we have equality in the inequality for each λ � 0, then the corres-
ponding class is denoted by W

∗
e .

Let us recall that, for an increasing process A = (At)t�0, the family of random
variables Ct = inf{s � 0: As > t} is the change of time generated by A. For
a progressively measurable process X , the time-changed process X ◦ C = (XCt)t�0 is
well defined if Xt converges a.s. to a finite limit X∞ as t→ ∞ on the set {A∞ <∞}.

Here a single jump martingale is understood in the narrow sense; namely, M =
(Mt)t�0 is said to be a single jump martingale if it has the form

Mt =W ∧ t− V 1{t�W},

where a pair (V,W ) of random variables has a joint distribution from W
∗
e . It is easy

to show that M is indeed a martingale (e.g., with respect to the filtration that it gen-
erates). Let us note that the process At :=W ∧ t is continuous and hence predictable,
and therefore it is the compensator of the increasing process Xt := V 1{t�W}.

The following proposition is the initial point for further analysis.

Proposition 1 [1]. Let X be a nonnegative local submartingale with the Doob–
Meyer decomposition X =M +A, X0 =M0 = A0 = 0. If P(A∞ <∞) = 1, then Xt

10Supported by the Russian Science Foundation (grant 14-21-00162).
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converges a.s. to a finite limit X∞ as t → ∞ and Law(X∞, A∞) ∈ W
∗. Moreover,

Law(X∞, A∞) ∈ W
∗
e if and only if (X −A) ◦C is a single jump martingale, where C

is the change of time generated by A.

In particular, if N , N0 = 0, is a local martingale such that its running maximum
N t := sups�tNs is continuous and P(N∞ < ∞) = 1, then Law(N∞ − N∞, N∞) ∈
W

∗. Moreover, it is clear that for any μ ∈ W
∗
e, there exists a single jump martingaleM

such that Law(M∞ −M∞,M∞) = μ. Therefore, for any local martingale satisfying
the above conditions and such that Law(N∞ −N∞, N∞) ∈ W

∗
e, there exists a single

jump martingale M such that the joint distribution Law(M∞,M∞) coincides with
Law(N∞, N∞). On the other hand, if we embedM into a Brownian motion according
to the first Monroe’s theorem, then one can construct a Skorokhod embedding τ , i.e.,
a Brownian motion B and a minimal stopping time τ such that the joint distribution
Law(Bτ , Bτ ) is again the same as Law(N∞, N∞).

This leads to the natural question of whether there are similar representations for
distributions in W

∗. It turns out that, for any measure μ ∈ W
∗, one can construct

a locally integrable increasing process X with continuous compensator A and such
that Law(X∞, A∞) = μ. However, X can be chosen as an increasing process with
a single jump if and only if∫

(x− y)+ μ(dx, dy) �
∫
(y − x)+ μ(dx, dy).

REFERENCES

[1] A. A. Gushchin, The joint law of terminal values of a nonnegative submartingale and its
compensator, Theory Probab. Appl., 62 (2018), pp. 216–235.

A. S. Holevo (Steklov Mathematical Institute, Moscow, Russia). Quantum
dynamical semigroups: Nonstandard generators, stochastic representa-
tions. 11

Quantum dynamical semigroups are a noncommutative analogue of (sub-)Markov
semigroups in classical probability: while the latter are semigroups of positive nor-
malized maps in functional spaces, the former are semigroups of corresponding maps
in operator algebras [1]. These semigroups satisfy the Markovian master equations
(M.m.e.), which are a noncommutative generalization of the Kolmogorov–Chapman
equations.

Let K,Lj be linear operators that are defined on a dense domain D of a Hilbert
space H and satisfy the condition

(1)
∑
j

‖Ljψ‖2 � 2Re〈ψ|K|ψ〉, ψ ∈ D ;

in particular, K is accretive: Re〈ψ|K|ψ〉 � 0, ψ ∈ D . We assume that K is a maximal
accretive operator. Then there exists a unique minimal solution Tt, t � 0, to the
Cauchy problem of the backward quantum M.m.e.

(2)
d

dt
〈ϕ|Tt[X ]|ψ〉 =

∑
j

〈Ljϕ|Tt[X ]|Ljψ〉 − 〈Kϕ|Tt[X ]|ψ〉 − 〈ϕ|Tt[X ]|Kψ〉,

11This work was carried out in the framework of the state contract with Steklov Mathematical
Institute.
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where ϕ, ψ ∈ D , X ∈ L(H ), satisfying the condition T0[X ] = X , which is a dynamical
semigroup on the algebra L(H ) of all bounded operators in H (see [2]).

If, in addition, Lj are closable and such that
∑

j ‖L∗
jψ‖2 <∞ for ψ ∈ D∗, where

D∗ is an essential domain for K∗, then the predual semigroup S0
t = (Tt)∗ is a minimal

solution of the forward M.m.e.

(3)
d

dt
〈ϕ|S0

t [ω]|ψ〉 =
∑
j

〈L∗
jϕ|S0

t [ω]|L∗
jψ〉 − 〈K∗ϕ|S0

t [ω]|ψ〉 − 〈ϕ|S0
t [ω]|Kψ〉,

where ϕ, ψ ∈ D∗, ω ∈ T(H ), and T(H ) = L(H )∗ is the Banach space of trace-class
operators ω in H . There is a classical probabilistic representation

〈ϕ|Tt[X ]|ψ〉 = E〈ϕ(t)|X |ψ(t)〉

via weak-topology solutions of the stochastic integral equation of the form

ψ(t) = ψ +

∫ t

0

∑
j

Ljψ(s) dWj(s)−
∫ t

0

Kψ(s) ds,

where Wj(t), j = 1, 2, . . . , are independent standard Wiener processes [2].

A semigroup is standard if it is a minimal solution of backward M.m.e. in the
above sense. We consider two cases of dynamical semigroups obtained by singular
perturbations of the generator of a standard semigroup [3]. We first describe a gener-
alization of an example [4] of a standard dynamical semigroup which does not satisfy
the forward M.m.e. Second, we consider an improved construction of a nonstandard
dynamical semigroup.

REFERENCES

[1] A. S. Holevo, Statistical Structure of Quantum Theory, Lect. Notes Phys. Monogr. 67,
Springer-Verlag, Berlin, 2001.
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Fields, 104 (1996), pp. 483–500.
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P. N. Ievlev (St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, St. Petersburg, Russia). Probabilistic representa-
tion of the Cauchy problem solution for the multidimensional Schrödinger
equation. 12

Consider the Cauchy problem for the Schrödinger equation

−i∂u
∂t

=
1

2
Δu,

where Δ is the Laplacian in Rd. In [1], a method of probabilistic representation of the
solution to the Cauchy problem for the Schrödinger equation was derived based on

12Supported by the Russian Science Foundation (grant 17-11-01136).
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a probabilistic representation of the solution to the Cauchy problem for the heat equa-
tion. Namely, it was proposed to consider the one-dimensional Schrödinger equation
as the heat equation

∂u

∂t
=
σ2

2

∂2u

∂x2

but with complex σ = exp(iπ/4). An attempt at direct use of the well-known proba-
bilistic representation involves several difficulties. In order to circumvent these issues,
some “operations” were introduced [1] that led to the notion of “generalized random
variables” (with special emphasis on the fact that this notion is not mathematically
rigorous). It has turned out that a “generalized random variable” in the sense of [1]
can be looked upon as a random functional. In the present study, we also use the
notion of a random functional, but, as distinct from [2], we choose a different space
of sampling functions and a different set of operations over functionals. Using the
objects just defined, the principal result of [1] can be easily extended to the multi-
dimensional setting. Namely, we construct a family of probabilistic semigroups
{P t

ε}ε>0, which converges L2-strongly to the semigroup P t = exp(itΔ/2) that corre-
sponds to the solution of the Schrödinger equation.

REFERENCES

[1] I. A. Ibragimov, N. V. Smorodina, and M. M. Faddeev, On a limit theorem related to
probabilistic representation of solution to the Cauchy problem for the Schrödinger equation,
J. Math. Sci. (N.Y.), 229 (2018), pp 702–713.
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D. V. Ivanov (Moscow, Russia). Problems of reachability of conditional
bounds of the expected maxima of independent random variables.

We are concerned with expected maxima of an arbitrary number n of random
i.i.d. variables X1, . . . , Xn,

μn = Emax{X1, . . . , Xn}.

Probability distributions with zero mean and variance of 1, and with given value of
the expected maximum of m independent random variables of this distribution, are
considered. Classical inequalities for the expected maxima can be found in [2]. We
study the problem of reachability of the boundaries, as obtained in [2]. Namely, we
determine the ranges of μm such that these bounds are reachable. The boundaries
are clarified in the cases where this problem is still open. In addition, the boundaries
reachability condition is studied, provided that the expected maxima of m and p
random variables, respectively, are known. In particular, for n = 4, p = 3, m = 2, we
get the bound

μ4 � 2μ3 −
6

5
μ2 +

1

5
√
7

√
1− 20μ2

3 + 60μ3μ2 − 48μ2
2,

which is reachable on the domain

86025μ4
2 − 211200μ3μ

3
2 + 200000μ2

3μ
2
2

− 4102μ2
2 − 86400μ3

3μ2 + 5040μ3μ2 + 14400μ4
3 − 1680μ2

3 + 49 � 0

D
ow

nl
oa

de
d 

05
/0

4/
19

 to
 4

6.
24

2.
14

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3RD INTERNATIONAL CONFERENCE ON STOCHASTIC METHODS 143

for the distribution with a specific cubic generalized inverse distribution function x(F ).
It is also demonstrated that in a number of cases the resulting bound is better than
its analogue from [3]. This problem has applications in queuing theory, insurance,
finance, and other fields.

REFERENCES
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M. I. Kadomtsev, A. A. Lyapin (Rostov-on-Don, Russia). Stochastic
methods of analysis of nonstationary signals in structure health monitor-
ing. 13

The problem of analysis of dynamic response of structures to external stochas-
tic loads in structure health monitoring is considered. The object of the study is
the construction design. The aim of the study is to verify the presence or absence
of structural damage. To achieve this goal, we use an approach involving statistical
processing of data obtained using a network of vibration sensors, and recognition of
statistical patterns using a supervised neural network. Application of Bayes’s theorem
yields P(Ci|{xi}) = p({xi}|Ci)P(Ci)/p({xi}), where the vectors {xk}, k = 1, . . . , N ,
are known and acquired from sensors in parallel with oscillation recording for each
classCk; p({x}) is the unconditional density function, which can be computed from the
training set if necessary by concatenating all the feature vectors over all classes; and
P (Ci) is the prior probability of finding an example from class Ci without considering
any measurement information. This allows us to construct the a priori conditional
probability density functions p({x}|Ci), which specify the probability that a measure-
ment vector {x} can arise from the class Ci. As always, such a statement of the
problem makes this approach suitable for dealing with supervised learning problems.
In contrast to the methods discussed in [2], statistical parameters of amplitude and
energy distribution in the frequency domain are taken as input data for the neural
network. The data obtained from sensors developed in ASA DSTU are used for the
analysis. In addition, use is made of the data obtained from modeling a structure [1]
by the finite element and boundary element methods for different soil structures.

REFERENCES

[1] A. Beskopylny, A. Lyapin, M. Kadomtsev, and A. Veremeenko, Complex method of defects
diagnostics in underground structures, in 9th International Scientific Conference on Building
Defects (Building Defects 2017) (Budejovice, 2017), MATEC Web Conf. 146, EDP Sciences,
London, 2018, 02013.

[2] Yu. I. Zhigulskaya and A. A. Lyapin, Solution of inverse problems of construction mechanics
on the basis of neural networks, Nauchn. Obozr., 2 (2014), pp. 441–445.

13Supported by the Russian Foundation for Basic Research (grant 18-01-00715).
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A. V. Korolev (Moscow, Russia). On nonuniform averages of stochastic
flows in the ergodic theorem. 14

Consider nonuniform averagings of the form Ft(x) =
∫∞
0 f(Tts)ρ(s) ds for an

ergodic dynamical system Tt, t � 0, on a probability space (X,μ), where ρ is
a probability density on [0,+∞). Consider the stochastic differential equation dξxt =
A(ξxt ) dwt + b(ξxt ) dt, ξ

x
0 =x. Suppose that μ is the corresponding Tt-invariant proba-

bility measure, f ∈ Lp(μ), ν = ρ(s) ds, where ρ ∈ Lq[0,+∞).
We also assume that one of the following conditions is fulfilled: (1) the density ρ

has bounded support on [a, b]; (2) p > 1, and there exists a nondecreasing function β
on [0,+∞) such that β � 0, β ∈ Lq[0,+∞), and ρ(t) � β(t) on [t0,+∞) for some t0.
Then

lim
T→∞

∫ +∞

0

f(ξxts(w))ρ(s) ds =

∫
X

f dμ

for every x ∈ X , for P -almost all w ∈W and certain assumptions on A and b.
For a detailed account, see [1], [2].

REFERENCES
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Dokl. Math., 75 (2007), pp. 47–52.

[2] V. I. Bogachev, A. V. Korolev, and A. Yu. Pilipenko, Non uniform averagings in the
ergodic theorem for stochastic flows, Dokl. Math., 81 (2010), pp. 422–425.

Y. O. Koroleva, A. V. Korolev (Moscow, Russia). On a hydrodynamic
problem in a domain with random roughness. 15

We study a three-dimensional incompressible flow of lubricant in a thin domain
bounded by two moving surfaces x3 = εh±(x1, x2, t), (x1, x2) ∈ ω, t ∈ [0, T ], with
rough random structure. It is assumed that the parameter ε > 0 characterizes the
thickness of the gap between the surfaces. The roughness of the surfaces is assumed to
be an ergodic stochastic process, and hence the pressure is also a stochastic process,
which in the limit as ε→ 0 satisfies the stochastic Reynolds equation

Dth+ div

(
− h3

12ν
∇p∗ + h

2
(v+ + v−)

)
= 0 for ω × (0, T ).

Here ν is the viscosity of the lubricant, v± are given velocities of the surfaces, h ≡
h+−h− = h0+hs, and h0 is the film thickness corresponding to smooth surfaces, while
the term hs describes the roughness of the surfaces and is assumed to be a randomly
varying field of mean 0.

The results obtained generalize those derived in the case of a similar lubrication
problem in a domain with smooth deterministic boundaries (see [1], [2]).

REFERENCES
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14Supported by the Russian Foundation for Basic Research (grant 18-31-00311) and by the
Programme of the President of the Russian Federation for Support of Young Scientists (grant
MK-5870.2018.1).

15Supported by the Russian Foundation for Basic Research (grants 17-08-01287, 18-31-00311)
and by the Programme of the President of the Russian Federation for Support of Young Scientists
(grant MK-5870.2018.1).
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[2] J. Fabricius, Y. O. Koroleva, A. Tsandzana, and P. Wall, Asymptotic behaviour of Stokes
flow in a thin domain with a moving rough boundary, Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 470 (2014), 20130735.

N. P. Krasiy (Don State Technical University, Rostov-on-Don, Russia). A re-
finement to the theorem on the existence and uniqueness of the maximum
point in problems of optimization of quasilinear models with independent
priorities. 16

In [1], conditions were found that guarantee the existence and uniqueness of
the maximum point of the objective function for an optimizer which sets priori-
ties (independent random variables αj ∈ [0; 1], j = 1, . . . , k) between k differently
directed structures interacting in the same system. In this case, the objective func-
tion is of the form F =

∏k
j=1 Eu

αj

j , where uj =
∑n

i=1 aijxi + bj , aij ∈ R, bj ∈ R,
x = (x1, . . . , xn) ∈ Rn. We discuss the possibility of relaxing the conditions of The-
orem 1 of [1]. As a result, the following refined formulation of the theorem on the
existence and uniqueness of the maximum point of the function F is obtained.

Theorem. Let the following conditions be satisfied :
(1) P(0 < αj < 1) > 0, j = 1, . . . , k;
(2) the system of vectors aj = (a1j , . . . , anj), j = 1, . . . , k, is linearly dependent,

and each vector is expressed in terms of the others with negative coefficients −cj ,
cj > 0, j = 1, . . . , k − 1;

(3) ck =
∑k−1

j=1 cjbj + bk > 0.

Then the function F for uk = −
∑k−1

j=1 cjuj + ck has in the positivity domain
a unique stationary point, which is the point of the local (and also global) maximum.

REFERENCES

[1] I. V. Pavlov and S. I. Uglich, Optimization of complex systems of quasilinear type with several
independent priorities, Vestn. RGUPS, no. 3(67), 2017, pp. 140–145 (in Russian).

O. E. Kudryavtsev (Rostov-on-Don, Russia). Monte Carlo method and
Wiener–Hopf factorization in option pricing problems in Lévy models. 17

An application of the Monte Carlo method is very time consuming in the case
of Lévy models for pricing options with payoff depending not only on the final price,
but also on the price supremum (infimum). An approach combining the Monte Carlo
method and the Wiener–Hopf factorization was proposed in [1]. This method is ap-
plicable for pricing exotic options in Lévy models admitting an explicit factorization.
It should be noted that the time randomization used in [1], which in essence is equiv-
alent to the partition of sample path on n parts, results in a slow convergence of the
method (of order O(n−1)).

In the present research, the Monte Carlo method [1] is generalized to a wider
class of Lévy processes. Construction of the characteristic functions of supremum
(infimum) processes uses approximate formulas for Wiener–Hopf factors [2] with the
inverse Laplace transform applied to them. The Laplace transform is inverted by
using the Gaver–Stehfest algorithm. Thus, in the method considered, a simulation

16Supported by the Russian Foundation for Basic Research (grant 16-01-00184).
17Supported by the Russian Foundation for Basic Research (grant 18-01-00910).
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of the supremum (infimum) processes is implemented directly, which results in an
essential gain in the computing speed.

The Monte Carlo method suggested can be optimized by means of a parallel
computing application based on nVidia CUDA API for simulating sample paths of
a joint distribution of the asset price and the maximal (minimal) price.

REFERENCES

[1] A. Kuznetsov, A. E. Kyprianou, J. C. Pardo, and K. van Schaik, A Wiener–Hopf Monte
Carlo simulation technique for Lévy processes, Ann. Appl. Probab., 21 (2011), pp. 2171–2190.

[2] O. Kudryavtsev, Advantages of the Laplace transform approach in pricing first touch digital
options in Lévy-driven models, Bol. Soc. Mat. Mex. (3), 22 (2016), pp. 711–731.

E. Lepinette, J. Baptiste, L. Carassus (Paris, France). Pricing without
martingale measure.

Our first motivation is to characterize the minimal super-hedging prices of a Eu-
ropean claim under a very weak no-arbitrage condition. It appears that it is possible
to solve the problem first in a two-step model without supposing any no-arbitrage con-
dition. The key tool is a new theorem stating that a conditional essential supremum
is actually a pointwise supremum, i.e., just a deterministic supremum once ω ∈ Ω
is fixed. For this two-step model, the minimal price of any nonnegative payoff is
either nonnegative or −∞. In the second case, that corresponds to the existence of
negative prices for the zero claim and, more generally, for any arbitrarily fixed Call
option. Therefore, the no-arbitrage condition we consider is the nonnegativity of the
price of any fixed Call option. Clearly, this condition is observed in practice. More-
over, it is weaker than the classical no-arbitrage condition equivalent to the existence
of a risk-neutral probability measure. Finally, we propose a rather general model
allowing one to reiterate the arguments of the two-step model and deduce the min-
imal super-hedging prices. This contribution is innovative in the sense that we may
consider models which do not admit any martingale measure under a very natural
condition observed in real markets.

D. I. Lisovskii (Moscow, Russia). Sequential hypothesis testing problem
for stationary Gauss–Markov processes. 18

We consider continuous in probability stationary Gauss–Markov processes.
According to the classical Doob’s result [1], such a class coincides with the class of
stationary Ornstein–Uhlenbeck processes. It is assumed that there are two hypotheses
to distinguish,

H0 : dXt = θ(μ−Xt) dt+ σ dBt, X0 ∼ N

(
μ,
σ2

2θ

)
,

H1 : dXt = γ(μ−Xt) dt+ σ dBt, X0 ∼ N

(
μ,
σ2

2γ

)
,

where σ > 0, μ ∈ R is a mean function of X , the parameters θ, γ > 0 stand for the
speed of mean-reversion of the observable process, and B = (Bt)t�0 is a standard
Brownian motion independent of the initial value X0 (all the processes and random
variables are assumed to be given on some probability space (Ω,F ,P)).

18Supported by the Russian Foundation for Basic Research (grant 16-08-01285).
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Following A. Wald, we assume that any decision rule Δ = Δ(τ, d) is given by
the following pair: a stopping moment τ , which is a Markov time adopted to the
natural filtration F

X generated by the observable process X , and a function of the
final decision d, which is an FX

τ -measurable random variable that can take only
two different values such that each can be identified with a decision in favor of the
hypothesis H0 or H1. According to Liptser and Shiryaev [2], a decision rule Δ∗ =
Δ(τ∗, d∗) is said to be optimal in the class of all sequential schemes provided the
probabilities of a wrong terminal decision are given and to be fixed if it minimizes the
Kullback–Leibler divergence in this class.

We are concerned with the SPRT (sequential probability ratio test), which is
known [3], [4] to be optimal for a number of models. We show [5] that for the above
problem the SPRT ceases to be optimal but is still asymptotically optimal only in the
most interesting cases: when the error probabilities of the first and second kinds tend
to zero and when the tested parameters go off to infinity but the distance between
them is fixed.

This talk is based on joint work with A. N. Shiryaev.

REFERENCES

[1] J. L. Doob, The Brownian movement and stochastic equations, Ann. of Math. (2), 43 (1942),
pp. 351–369.

[2] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Vol. 2, 2nd rev. and exp.
ed., Appl. Math. 6, Springer-Verlag, Berlin, 2001.

[3] A. I. Yashin, On a problem of sequential hypothesis testing, Theory Probab. Appl., 28 (1984),
pp. 157–165.

[4] L. I. Galtchouk, Optimality of the Wald SPRT for processes with continuous time parameter,
in MODA 6 – Advances in Model-Oriented Design and Analysis (Puchberg/Schneeberg, 2001)
Contrib. Statist., Physica, Heidelberg, 2001, pp. 97–110.

[5] D. I. Lisovskii and A. N. Shiryaev, Sequential testing of two hypotheses for a stationary
Ornstein–Uhlenbeck process, Theory Probab. Appl., 63 (2019), pp. 580–593.

A. V. Makarova, V. A. Gorlov (Voronezh, Russia). Stochastic inclusions
with current velocities having decomposable right-hand sides.

A natural analogue of standard physical velocity of a deterministic curve is the
current velocity (the symmetric mean derivative of a random process, which was
introduced by Edward Nelson). If the current velocity and the quadratic derivative in
the mean are given, then under certain conditions it is possible to construct a process
with a prescribed current velocity and quadratic derivative. Yu. E. Gliklikh and
S. V. Azarina showed that the solution exists under very stringent conditions when
the multivalued current velocity and a single-valued quadratic derivative are given
(see [1]). Hence, of special importance is the further investigation of inclusions of
this kind for more general settings involving the current velocity and the quadratic
derivative. An existence theorem for stochastic differential inclusions defined in terms
of the so-called current velocities is obtained. The right-hand sides involving the
current velocity and the quadratic derivative are multivalued, lower semicontinuous,
and decomposable.

Theorem 1. Let multivalued fields v and α on T n be lower semicontinuous and
uniformly bounded and have closed decomposable images of points. Consider a random
element ξ0 with values in T n such that the density ρ0 with respect to the Euclidean
volume form ΛE is smooth and vanishes nowhere. Then, for the initial condition
ξ(0) = ξ0, the inclusion has a well-posed solution on the entire interval t ∈ [0, T ].
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REFERENCES

[1] S. V. Azarina and Yu. E. Gliklikh, On the solvability of nonautonomous stochastic differ-
ential equations with current velocities, Math. Notes, 100 (2016), pp. 3–10.

G. V. Martynov (IITP RAS, Moscow, Russia). Notes on the Cramér–von
Mises test with estimated parameters. 19

We consider various ways of applying the Cramér–von Mises test for testing the
hypothesis that the distribution of the observed random variable belongs to a para-
metric family. The universal martingale method of Khmaladze is well known for
the transformation of empirical processes (see [1]). This method leads to statis-
tics with a limiting distribution that does not depend on the parametric family
and also on the unknown value of the parameter. The previously known methods,
however, can be easily applied to the most well known families of distributions of
the form {G((x − m)/σ), −∞ < x,m < ∞, σ > 0}, {R((x/β)α), α, x, β > 0}, or
{R((x/β)α), α, x, β > 0} (see [3]). These families include, for example, normal, log-
normal, Weibull, Pareto, exponential, and double exponential distributions, as well as
other distributions. The aim of the present paper is to describe the method of using
the Cramér–von Mises test in the case when the limiting distribution of statistics
depends on an unknown parameter. In this case, specially calculated tables are used
during testing of the hypothesis with the approximation of an unknown parameter by
its estimate. The results of paper [2] can be used here. The corresponding error in
the significance level is also analyzed.

REFERENCES

[1] E. V. Khmaladze, Martingale approach in the theory of goodness-of-fit tests, Theory Probab.
Appl., 26 (1982), pp. 240–257.

[2] G. Martynov, Weighted Cramér–von Mises test with estimated parameters, in LAD—2004
Longevity, Aging and Degradation Models in Reliability, Public Health, Medicine and Biol-
ogy, Vol. 2 (St. Petersburg, 2004), St. Petersburg State Politech. Univ., St. Petersburg, 2004,
pp. 207–222.

[3] G. Martynov, Note on the Cramér–von Mises test with estimated parameters, Publ. Math.
Debrecen, 76 (2010), pp. 341–346.

E. Yu. Mashkov (Kursk, Russia). On solvability of singular stochastic
Leontief-type equation with impulse action II. 20

By a stochastic Leontief-type equation we mean a special class of stochastic dif-
ferential equations in the Itô form such that both their left- and right-hand sides
contain rectangular real matrices that form a singular pencil (see [1]). In addition,
the right-hand side contains, first, a deterministic summand, which depends only on
time, and second, an impulse action (see [2]). It is assumed that the diffusion coef-
ficient of the system is given by a matrix depending only on time. For investigation
of the equation it is required to consider derivatives of the free terms (including the
Wiener process) of sufficiently high orders. In this connection, to differentiate the
Wiener process, we apply the machinery of Nelson mean derivatives (see [3]) of ran-
dom processes, which makes it possible to avoid using the theory of distributions in
the study of the equation.

19Research was performed at the Institute for Information Transmission Problems of the Russian
Academy of Sciences with financial support from the Russian Science Foundation (grant 14-50-00150).

20Supported by the Russian Foundation for Basic Research (grant 18-01-00048).
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Theorem. Under the above hypotheses, analytic formulas hold for the solutions
of the equation in terms of symmetric derivatives in the mean of random processes.

REFERENCES

[1] E. Yu. Mashkov, Singular stochastic Leontieff type equations with depending on time diffusion
coefficients, Global Stochastic Anal., 4 (2017), pp. 207–217.

[2] L. A. Vlasenko, S. L. Lyashko, and A. G. Rutkas, On a stochastic impulsive system, Dopov.
Nats. Akad. Nauk Ukr. Mat. Pryr. Tekh. Nauky, 2012, pp. 50–55.

[3] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics,
Theoret. Math. Phys., Springer-Verlag London, Ltd., London, 2011.

V. V. Misyura (Rostov-on-Don, Russia). Application of online teaching
methods for predicting the flow of events in stochastic models with uncer-
tain parameters. 21

The talk, which is based on the paper [1], is concerned with online learning
technology for forecasting the flow of random events in stochastic models with uncer-
tain drift and volatility in discrete time. We follow the approach where, instead of
a single model, one considers a set of possible models as experts or decision rules
from pattern recognition. Experts make predictions of the future outcome. We
define the forecast as a real number from the interval [0, 1]. We assume that the
loss function l(y, z) is defined, where y ∈ { 0, 1 }, z ∈ [0, 1]. The predictive algo-
rithm observes the estimates from experts and assesses their effectiveness. The pre-
dictive algorithm is based on problems of linear and nonlinear programming. The
goal is to minimize the difference between the loss of the algorithm and the loss
of the best mixed model that has the minimum amount of loss. The following
main result is proved. If l(1, x) and l(0, x) are convex functions, then the mini-
max local forecast zt+1 is a solution of the following equation: l(1, z) − l(0, z) =∑t

i=1 l
(
yi, (xu1∗)i

)
+ l

(
1, (xu1∗)t+1

)
−

[∑t
i=1 l

(
yi, (xu0∗)i

)
+ l

(
0, (xu0∗)t+1

)]
. The com-

putational experiment is carried out on the basis of models with indeterminate drifts
and volatility, which is used as an alternative to the Black–Scholes model [2]. The
forecast results show the expedience and effectiveness of the method proposed.

REFERENCES

[1] G. Belyavsky and V. Misyura, A random event forecast in stochastic models with undefined
parameters, Far East J. Math. Sci. (FJMS), 103 (2018), pp. 159–170.

[2] A. N. Shiryaev, Part 1. Facts, models, in Essentials of Stochastic Finance. Facts, Models,
Theory, Adv. Ser. Stat. Sci. Appl. Probab. 3, World Sci. Publ., River Edge, NJ, 1999, pp. 2–379.

F. S. Nasyrov (Ufa, Russia). A deterministic approach to stochastic max-
imum principle.

The solution of the minimization problem of the objective functional

JE(u( · )) = E{J(u( · ))}, J(u( · )) =
∫ T

0

f0(t, x(t), u(t)) dt + g0(T, x(T ))

under the constraints

(1) dx(t) = σ(t, x(t)) dW (t) + b(t,X(t), u(t)) dt, x(0) = x0,

21Supported by the Russian Foundation for Basic Research (grant 17-01-00888-a).
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using the maximum principle, is called the stochastic maximum principle; here W (t)
is a Wienier process, and the first term in the right-hand side of (1) is a stochastic
Itô integral.

In parallel with this problem, we also consider the appropriate pathwise antici-
pative control problem of minimizing the pathwise cost functional J(u( · )) under the
same constraints (1); this problem is called the pathwise problem of the maximum
principle.

We study the problem of constructing nonanticipative controls u( · ) in both prob-
lems.

(a) It is shown that the solutions of both problems are reduced to those of similar
problems such that the cost functional is modified by a newly introduced additional
term (the Lagrange multiplier Λ( · )); this idea seems to date back to Davis (see [1]).

(b) It is proved that the boundary-value problem of the stochastic maximum
principle can be obtained from the pathwise problem by imposing the “nonbias”
condition on the Lagrange multiplier.

(c) It turns out that, using the machinery of symmetric integrals, the pathwise
maximum principle can be extended to the case when, instead of the Wienier pro-
cess W (t), one takes an arbitrary random process with continuous realizations v(t),
and in equation (1) the first term on the right is a symmetric integral with respect to
the process v(t). Moreover, the boundary-value problem of the maximum principle
retains its form. However, in this case, the choice of the Lagrange multiplier is in
general nonunique, which calls for the refinement of the statement of the problem
itself.

REFERENCES

[1] M. H. A. Davis and G. Burstein, A deterministic approach to stochastic optimal control with
application to anticipative control, Stochastics Stochastics Rep., 40 (1992), pp. 203–256.

[2] F. S. Nasyrov, Local Times, Symmetric Integrals and Stochastic Analysis, Fizmatlit, Moscow,
2011 (in Russian).

A. V. Nikitina (Rostov-on-Don, Russia), A. A. Semenyakina (Taganrog,
Russia). Modeling of phytoplankton production and destruction processes
in shallow water based on the stochastic approach. 22

The talk covers the water pollution process by biogenic elements entering with
river runoff, as well as a result of natural and industrial challenges; this process is con-
sidered probabilistic [1]. The stochasticity is conditioned by many factors, including
anthropogenic, climatic, biological, and morphological ones, that define the pollution
and phytoplankton concentrations in the control range.

The model of the production-destruction processes of phytoplankton reads as

∂qi
∂t

+ div(U, qi) = div(ki grad qi) +Ri, ki = {μi, μi, νi}, i = 1, . . . , 10,

where qi is the concentration of the ith component; u is the velocity vector of the wa-
ter flow, u = {u, v, w}; U is the matter convective transport velocity, U = {U, V,W};
U = u+u0i, u0i stands for the sedimentation velocity of the ith component; Ri is the
chemical-biological source, where index i corresponds to the type of substance: 1–3 are
substance concentrations from algae Chlorella vulgaris, Aphanizomenon flos-aquae,

22Supported by the Russian Science Foundation (grant 17-11-01286).
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and Sceletonema costatum, respectively, 4 is PO4, 5 is POP, 6 is DOP, 7 is NO3,
8 is NO2, 9 is NH4, 10 is Si (here PO4 are phosphates, POP is suspended organic
phosphorus, DOP is dissolved organic phosphorus, NH4 is ammonium, NO2 are ni-
trites, NO3 are nitrates, and Si is dissolved inorganic silicon); and μi, νi are diffusion
coefficients in the horizontal and vertical directions.

The system is augmented with initial and boundary conditions. The development
of stochastic models of mass transfer velocities, which is based on the Mitcherlich con-
jecture on the simultaneous effect of factors on the mass transfer velocity, includes
the development of models for organic matter production velocity in water and de-
struction by the phyto-, zoo- and bacterial plankton.

An algorithm to verify the adequacy of the developed probabilistic models of
observation is derived. Verification of the convergence of the actual (measured) and
calculated (simulated) values is carried out on the basis of the randomness criterion:
δ = DΔ/D, where D and DΔ are, respectively, the variance of a number of actual
values of the parameter and its random component caused by the impact of random
elements. If δ < 0.7, then the value is accepted as satisfactory. The agreement of the
calculated value with the actual one is considered satisfactory if the difference does
not exceed 0.7σ in absolute value, where σ is the standard deviation of the original
actual series.

REFERENCES

[1] A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, and A. V. Nikitina, Numerical
modeling of ecologic situation of the Azov sea with using schemes of increased order of accuracy
on multiprocessor computer system, Comput. Res. Model., 8 (2016), pp. 151–168.

I. V. Pavlov, I. V. Tsvetkova (Rostov-on-Don, Russia). Ranking of vari-
ables in order of their smallness when solving systems of inequalities for
finding weakly interpolating martingale measures. 23

Consider a measurable space (Ω,F ) and a filtration F = (Fk)
1
k=0 on Ω such

that F0 = {Ω,∅}, F1 = σ(B1, B2, . . . ), where {B1, B2, . . . } ⊂ F is a decom-
position of Ω. For a process Z = (Zk,Fk)

1
k=0, we denote a := Z0, bi := Z1|Bi ,

i ∈ N = 1, 2, . . . . Let P(Z,F) be the set of probability measures P on (Ω,F ) such
that pi := P (Bi) > 0, i ∈ N, and the process Z = (Zk,Fk, P )

1
k=0 is a martingale. We

assume that the sequence {bi}∞i=1 contains r (3 < r < ∞) different values (for exam-
ple, b1 < b2 < · · · < br), and mi is the order of the value bi, 1 � i � r, 1 � mi � ∞.
An essentially different case, where {bi}∞i=1 contains a countable number of different
values, was considered by A. G. Danekyants and N. V. Neumerzhitskaia in the ab-
stracts for ICSM-3. They also gave the definition of a weakly interpolating measure
from P(Z,F); this definition is equivalent to the following weakened noncoincidence
barycenter condition (WNBC). A martingale measure P = (p1, p2, . . .) is said to be-
long to WNBC(Z) if bi =

∑
j∈J bjpj

/ ∑
j∈J pj for any i ∈ N and any index set

J ⊂ N that does not contain i and is such that the complement J = N \ J is finite.
We are interested in the case where WNBC(Z) = ∅ without the assumption that
numbers {bi}ri=1 are rational (if all these numbers are rational, then WNBC(Z) = ∅;
see [1]). Earlier it was proved that (1) WNBC(Z) = ∅ if r = 3, at least two of the
numbers m1, m2, m3 are infinite, and either b1 < a < b2 or b2 < a < b3 (see [1]);
(2) WNBC(Z) = ∅ for r = 4, m1 = m2 = m3 = m4 = ∞, b1 < a < b2 (see [2]).

23Supported by the Russian Foundation for Basic Research (grant 16-01-00184).
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The result of the present study is that WNBC(Z) = ∅ for 3 < r < ∞, m1 < ∞,
. . . ,mr−2 < ∞, mr−1 = mr = ∞, b1 < a < b2. The underlying idea is that in
a special system of inequalities that gives measures from WNBC(Z), the unknown
variables are subdivided by the degree of smallness into three groups, which allows
one to solve this system.

In conclusion, we note that measures from WNBC(Z) are used to transform
incomplete financial markets into complete ones.

REFERENCES

[1] I. V. Pavlov, V. V. Shamrayeva, and I. V. Tsvetkova, On the existence of martingale
measures satisfying the weakened condition of noncoincidence of barycenters in the case of
countable probability space, Theory Probab. Appl., 61 (2017), pp. 167–175.

[2] V. V. Shamraeva, A new method to transform systems of inequalities to find the interpolation
of martingale measures, Meždunar. Nauč.-Issled. Žurn., no. 12-5(54), 2016, pp. 30–41.

I. V. Pavlov, S. I. Uglich (Rostov-on-Don, Russia). Investigation of max-
imum points of the objective function of a quasi-linear system with prior-
ities and the minimax problem. 24

Consider the functions Fj(x) =
(∑n

i=1 aijxi + bj
)
I
{∑n

i=1 aijxi + bj > 0
}
, j =

1, 2, . . . , k, where IA is the indicator of a set A. Let αj = αj(ω) be an arbitrary r.v.
defined on a probability space (Ω,F ,P) and assuming values from the interval (0; 1].

The first part of the talk is dedicated to the study of the maximum of the objective
function F =

∏k
j=1 Eu

αj

j , where E denotes the expectation with respect to probabil-
ity P, and all uj > 0. It follows from [1] that the stationary points in the positivity
domain of the function F exist only under the condition that for vectors of the system
aj = (a1j , . . . , anj), j = 1, . . . , k, the representation ak = −

∑k−1
i=1 ciai holds, where all

ci are strictly positive numbers. In this case, uk = −
∑k−1

i=1 ciui +
∑k−1

i=1 cibi + bk > 0.

According to [1], if in addition ck :=
∑k−1

i=1 cibi+bk > 0, then the objective function F
has in the domain F > 0 a unique stationary point xmax(c1, . . . , ck−1), which is the
maximum point of the function F .

In the second part of the talk, given a fixed aj , j = 1, . . . , k − 1, we vary the
model vector of the coefficients of ak under the condition bi > 0, i = 1, . . . , k, taking
various strictly positive values of the parameters (c1, . . . , ck−1). As a result, we get
the functions xmax(c1, . . . , ck−1) and Fmax = F (xmax(c1, . . . , ck−1)). We write down
a system of equations that can yield stationary points of the function Fmax, which are
often the minimum points. In conclusion, numerical illustrations with minimax are
given.

REFERENCES

[1] I. V. Pavlov and S. I. Uglich, Optimization of complex systems of quasilinear type with several
independent priorities, Vestn. RGUPS, no. 3(67), 2017, pp. 140–145.

24Supported by the Russian Foundation for Basic Research (grant 16-01-00184).
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E. A. Pchelintsev, S. S. Perelevskiy (Tomsk, Russia). Estimation of the
drift coefficient in diffusion processes. 25

Let the stochastic differential equation dyt = S(yt) dt+dwt, 0 � t � T , be defined
on a probability space (Ω,F ,P), where (wt)t�0 is a scalar standard Wiener process,
the initial value y0 is a given constant, and S( · ) is an unknown drift function from
the functional class ΣL,N , which was defined in [1]. The problem is to estimate the
function S(x), x ∈ [a, b], from observations of the process (yt)0�t�T and to obtain
a sharp nonasymptotic bound for the quadratic risk. An asymptotically efficient model
selection procedure based on weighted LSE Ŝ was proposed in [1] for estimation of
the function S. In the present talk, a model selection procedure is proposed based on
improved estimates S∗; this procedure outperforms the estimate from [1] in the mean
square accuracy.

Theorem. The estimate S∗ outperforms the estimate Ŝ in the mean
square accuracy; i.e., supS∈ΣL,N

(
ES‖S∗ − S‖2 −ES‖Ŝ − S‖2

)
< 0, where ‖ · ‖ is the

L2[a, b]-norm.

For an improvement of the nonasymptotic estimation quality, we use special
shrinkage estimates from [2], [3]. A sharp nonasymptotic oracle inequality is pro-
posed for a quadratic risk of the proposed estimate.

This is a joint work with S. Pirogov, A. Vladimirov, A. Yambartsev, and
G. Schütz.

REFERENCES

[1] L. Galtchouk and S. Pergamenshchikov, Asymptotically efficient sequential kernel estimates
of the drift coefficient in ergodic diffusion processes, Stat. Inference Stoch. Process., 9 (2006),
pp. 1–16.

[2] E. A. Pchelintsev and S. M. Pergamenshchikov, Oracle inequalities for the stochastic dif-
ferential equations, Stat. Inference Stoch. Process., 21 (2018), pp. 469–483.

[3] E. Pchelintsev, V. Pchelintsev, and S. Pergamenshchikov, Non asymptotic sharp oracle
inequalities for the improved model selection procedures for the adaptive nonparametric signal
estimation problem, Communications Scientific Letters of the University of Zilina, 20 (2018),
pp. 72–76.

E. A. Pechersky (Moscow, Russia). Large deviations for a class of Markov
processes. 26

The main object of this investigation is continuous-time Markov processes taking
their values in N × Zd

+, N = {0, 1, . . . , N} and d ∈ N. Let ζ = (ξ, η1, . . . , ηd) be
such a process. The transition probabilities are defined by the generator L acting
on functions g : N × Zd

+ → R. The generator L depends on positive real numbers
λ, μ1, . . . , μd and triplets (ki, ri, si), i = 1, . . . , d, of integers; here we assume that all
the triplets are different for different i and, moreover, ki � ri � si � 1. Then for the
generator of ζ we have

Lg(m, �1, . . . , �d) = λ(N −m)[g(m+ 1, �1, . . . , �d)− g(m, �1, . . . , �d)]

+
d∑

i=1

μiπi(m)[g(m− si, �1, . . . , �i + si, . . . , �d)− g(m, �1, . . . , �d)],(1)

where πi(m) =
(
m
ri

)(
N−m
ki−ri

)
.

25Supported by the Russian Science Foundation (grant 17-11-01049).
26This work was performed at IITP of RAS with support from the Russian Science Foundation

(grant 14-50-00150).
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We are concerned with the mean field theory.
We study large deviations of ζ on the path level. The process ζ is considered on

the time-interval [0, T ]. Our main interest is the behavior of certain functionals of the
process paths as N → ∞. In particular, we study the function

x̂(t) = lim
N→∞

E

(
1

N
ξ(t)

∣∣∣∣ 1

N

d∑
i=1

ηi(T ) > B

)
.

Theorem. There exists i0 ∈ {1, . . . , d} independent of the parameters defining
the process ζ such that

(2) lim
B→∞

x̂(t) ≡ ri0
ki0 + si0

on the open interval (0, T ).

A preliminary result in this direction was published in [1], where we studied the
case d = 1 and the triple (1, 1, 1). In this case, the limit in (2) is equal to 1/2.

REFERENCES

[1] E. Pechersky, S. Pirogov, G. M. Schütz, A. Vladimirov, and A. Yambartsev, Large
fluctuations of radiation in stochastically activated two-level systems, J. Phys. A, 50 (2017),
455203.

M. V. Platonova, K. S. Ryadovkin (St. Petersburg Department of Steklov
Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia).
A branching random walk on graphene lattice. 27

We consider a branching random walk on a graphene lattice with periodic sources
of branching and continuous time. The case of a homogeneous branching random walk
with periodic sources of branching was considered in [1]. A homogeneous branching
random walk with the finite number of branching sources was studied in detail (see
[2], [3], and references therein). Consider the set Γ = {g ∈ Z2 : g = n1g1 + n2g2, nj ∈
Z, j = 1, 2}, where g1 = (1, 0), g2 = (0, 2). We assume that the matrix of transition
intensities is a periodic matrix with respect to the lattice G; i.e., a(v, u) = a(u, v) =
a(v + g, u + g) for each vector g ∈ Γ. Given v1 = (0, 0), v2 = (0, 1), we assume that
a(v1, v1) = −3, a(v1, v2) = 1, a(v1, v2−g1) = 1, a(v1, v2−g2) = 1, a(v2, v2) = −3, and
a(v1, u) = 0 for the remaining vertices u. Next we assume that a branching source
with intensity β1 is located at the vertices v = v1 + Γ and that a branching source
with intensity β2 is located at the vertices v = v2 + Γ.

Denote by M(vj + γvj , vk + γvk , t) the expected value of the number of particles
at time t at point vk + γvk if at moment t = 0 there is one particle at point vj + γvj .
We show that, as t→ ∞,

M(vj + γvj , vk + γvk , t) =
eλ1(0)t

2πt

√
(β1 − β2)2 + 36

48

ψ1(vk, 0)ψ1(vj , 0)

‖ψ1(0)‖2�2(Ω)

(
1 +O(t−1)

)
,

where j, k = 1, 2; γvj , γvk ∈ Γ; λ1(0) is the largest eigenvalue of the matrix

A(0) =

(
−3 + β1 3

3 −3 + β2

)
;

27Supported by the Russian Science Foundation (grant 17-11-01136).
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and ψ1(vj , 0) is the jth component of the normalized eigenfunction of the matrix A(0)
corresponding to the eigenvalue λ1(0).

REFERENCES

[1] M. V. Platonova and K. S. Ryadovkin, On the mean number of particles of a branching
random walk on Z

d with periodic sources of branching, Dokl. Math., 97 (2018), pp. 140–143.
[2] E. B. Yarovaya, Criteria of exponential growth for the numbers of particles in models of

branching random walks, Theory Probab. Appl., 55 (2011), pp. 661–682.
[3] E. B. Yarovaya, Spectral properties of evolutionary operators in branching random walk models,

Math. Notes, 92 (2012), pp. 115–131.

V. V. Rodochenko, O. E. Kudryavtsev (Rostov-on-Don, Russia). On using
the Laplace transform for evaluation of the Wiener–Hopf factors for option
pricing in stochastic volatility models with jumps. 28

The machinery of [1] is capable of reducing the problem of pricing barrier
options in stochastic volatility models with jumps to a certain sequence of 1D
integro-differential equations. The kernels of the equations are defined by Lévy
processes Xt obtained from the initial model by using the tree-structured volatility
process approximations from [2].

An analytic solution for each of the problems can be expressed in terms of the
Laplace–Carson transforms φ+q (ξ) and φ

−
q (ξ) of the corresponding characteristic func-

tions of supremum and infimum processes Xt and Xt, respectively.
In the present talk, we consider the advantages of the application of the approx-

imate formulas consistent with those from [3] for the Wiener–Hopf factors φ±q (ξ). In
the case of the Heston model, we can compare the explicit formulas for the factors
with the approximate ones. Numerical experiments show that our implementation of
approximate formulas has an error of at most 1% for a reasonably low number of space
points of 210–212 with reducing the speed of calculations by approximately 1.5 times.
The comparison of the option prices obtained demonstrates a similar difference. We
conclude that the approximate Wiener–Hopf factorization formulas can be efficiently
used for general stochastic volatility models with jumps, including the famous Bates
model.

REFERENCES

[1] O. Kudryavtsev and V. Rodochenko, On a numerical method for solving integro-differential
equations with variable coefficients with applications in finance, J. Phys. Conf. Ser., 973 (2018),
012054.

[2] M. Briani, L. Caramellino, and A. Zanette, A hybrid approach for the implementation of
the Heston model, IMA J. Manag. Math., 28 (2017), pp. 467–500.

[3] O. Kudryavtsev, Advantages of the Laplace transform approach in pricing first touch digital
options in Lévy-driven models, Bol. Soc. Mat. Mex. (3), 22 (2016), pp. 711–731.

D. B. Rokhlin (Southern Federal University, Rostov-on-Don, Russia). Q-learn-
ing in a stochastic Stackelberg game. 29

We consider a game between a leader and a follower, where the players’ actions
affect the stochastic evolution of the state process xt, t ∈ Z+. The players observe

28Supported by the Russian Foundation for Basic Research (grant 18-01-00910).
29Supported by the Russian Science Foundation (grant 17-19-01038).
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their rewards and the system state xt. Each player does not know the transition kernel
of the process x and the reward function of the other player. At each stage of the game
the leader is the first to select action at. This action is known to the follower before
he or she selects bt. The follower’s actions are unknown to the leader (an uniformed
leader). Each player tries to maximize his or her discounted reward by applying the
Q-learning algorithm [1]. A special feature of the algorithm under consideration is
that, when updating his or her Q-function, the follower believes that the action of the
leader in the next state is the same as in the current one (a naive follower). Under
other assumptions, the Q-learning algorithm for the stochastic Stackelberg game was
considered in [2].

Let X be a finite state space. Denote by A and B the sets of admissible actions of
the leader and the follower. Assume that the evolution of the system is characterized
by the transition kernel p(y|x, a, b). This means that if the system is at a state x ∈ X
and if the leader and follower select a ∈ A, b ∈ B, then the probability of transition
to the state y ∈ X is equal to p(y|x, a, b). At each stage of the game

—the leader observes the system state xt ∈ X and selects an action at ∈ A;

—the follower observes the system state and the leader’s action and selects an
action bt ∈ B;

—the system moves to a state xt+1 with probability p(xt+1 | xt, at, bt);
—the leader and the follower get the rewards r1(xt, at, bt, xt+1) and

r2(xt, at, bt, xt+1), respectively.

These rules imply the inequality of players which is typical for a Stackelberg game.

Randomized strategies of players are defined as Boltzmann distribution depending
on the Q-functions Ql, Qf of the leader and the follower that are updated in the course
of learning. So, at each stage of the game the leader and the follower sequentially
select their actions a ∈ A, b ∈ B with probabilities

exp(Ql(x, a)/τ1)∑
a′∈A exp(Ql(x, a′)/τ1)

,
exp(Qf (x, a, b)/τ2)∑

b′∈B exp(Qf (x, a, b′)/τ2)
.

It is shown that the existence of deterministic stationary strategies generating an
irreducible Markov chain is sufficient for the convergence of the algorithm. The proof
is based on the known results [3] developing the idea of stochastic approximation.

The limiting large time behavior of Q-functions is described in terms of controlled
Markov processes, which for clarity are related to a virtual leader and a virtual fol-
lower. The distributions of the players’ actions converge to the Boltzmann distribu-
tions, depending on the limiting Q-functions. We also consider the behavior of these
limiting distributions for small “temperature” parameters τi.

REFERENCES

[1] C. J. C. H. Watkins and P. Dayan, Q-learning, Mach. Learn., 8 (1992), pp. 279–292.
[2] V. Könönen, Asymmetric multiagent reinforcement learning, Web Intelligence and Agent Sys-

tems, 2 (2004), pp. 105–121.
[3] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Bel-

mont, MA, 1996.
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V. V. Rykov, D. V. Kozyrev (Moscow, Russia). On problems of sensitiv-
ity of stochastic models. 30

Consider a renewable hot double redundant system such that its components
fail according to exponential law with intensities αi and are renewed during random
time distributed with general p.d.f. Bi(x) (i = 1, 2). We set bi(x) = B′

i(x), b̃i(s) =∫∞
0 e−sxbi(x) dx, bi =

∫∞
0 (1 − Bi(x)) dx, ρi = αibi (i = 1, 2). We give analytic

expressions for the reliability function of the system, stationary and quasi-stationary
probabilities (q.s.p.’s) of its states πj = limt→∞ P{J(t) = j | T > t}, where T is the
system lifetime, as well as their asymptotic insensitivity to the shape of renewal time
distributions. Results for q.s.p.’s are also given.

Theorem 1. The q.s.p.’s of the model under consideration have the form

π0 =

[
1 +

α1

α2 − γ

(
1− b̃1(α2 − γ)

)
+

α2

α1 − γ

(
1− b̃2(α1 − γ)

)]−1

,

πi = αi
(1 − b̃i(αi∗ − γ))(αi − γ)

(αi − γ)(αi∗ − γ) + αiφi(−γ) + αi∗φi∗(−γ)
(i = 1, 2),

where i∗ = 2 for i = 1, and conversely, γ is a root of the equation φ1(s)+φ2(s) = −s,
and φi(s) = αi(1− b̃i(s+ αi∗)) (i = 1, 2).

The result demonstrates the clear sensitivity of the system q.s.p.’s to the shapes
of the renewal time distributions. However, this sensitivity becomes negligible for rare
failures of the system components.

Theorem 2. Under the rare system component failures, when max{αi, i =
1, 2} → 0, its q.s.p.’s become asymptotically insensitive to the shape of their component
renewal time distributions and have the form

π0 ≈ 1

1 + ρ1 + ρ2
, πi ≈

ρi
1 + ρ1 + ρ2

(i = 1, 2).

REFERENCES

[1] D. Kozyrev, V. Rykov, and N. Kolev, Reliability function of renewable system under
Marshall–Olkin failure model, Reliability Theory Appl., 13 (2018), pp. 39–46.

N. A. Saifutdinova (Don State Technical University, Rostov-on-Don, Rus-
sia). On the randomization of the elasticity coefficients in the resources
allocation problem.

This talk presents a model similar to that considered in [1]. Consider the func-

tion F = f1 + f2, where f1 = xα1y1−α1 , f2 = (1 − x)
α2(1− y)

1−α2 describe the
performance of two economic objects (we assume that 0 � α1 � 1 and 0 � α2 � 1
are some constants). The problem of maximization of the function F on the set
D = {(x, y) : 0 � x � 1, 0 � y � 1} is solved; i.e., we find an optimal allocation of
resources x, y leading to the maximum economic effect. In [2] it was shown that for
α1 → 0 and α2 → 1 (or, in the symmetrical setting, α1 → 1 and α2 → 0) it is possible
to obtain values of F close to 2. Further, we assume that the indicators α1 and α2 are

30Supported by the Russian Foundation for Basic Research (grants 17-07-00142, 17-01-00633).
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the result of various expert recommendations on the choice of production technology,
which leads us to consider α1 and α2 as random variables. Consider the case when
these two random variables are dependent or, more precisely, α2 = 1 − α1. We set
α1 = α. In the case when α is a random variable with uniform distribution on [0; 1],
it turns out that EF � 1. The values of EF close to 2 can be achieved if as ε→ 0 we
consider the random variable of α with uniform distribution on the interval [0; ε] (or
on the interval [1− ε; 1]).

REFERENCES

[1] V. S. Vagin and I. V. Pavlov, Modeling and optimization of quasilinear complicated sys-
tems with due account of probabilistic character of priorities, Vestn. RGUPS, no. 1(61), 2016,
pp. 135–139.

[2] N. A. Sayfutdinova and M. A. Sumbatyan, Modeling of optimum distribution of resources
in a community of economic agents, Nauchn. Obozr., 2012, pp. 71–77.

V. V. Shamraeva (Moscow, Russia). Some models of the financial market
with an infinite number of buyers of shares. 31

We consider an arbitrage-free and incomplete (B,S)-market defined on the set
{Ω,F}, where Ω = {ωi}∞i=1, F = (F0,F1) is a one-step filtration (F0 = {Ω,∅}, and
F1 is the σ-algebra of all subsets of Ω). By Z = (Zn,Fn)

1
n=0 we denote an F-adapted

random process, which we think of as the discounted value of shares (Z0 = a,
Z1(ωi) = bi, bi > 0, i = 1, 2, . . . ). We say that a measure P satisfies the noncoin-
cidence barycenter condition (NBC) if the series

∑∞
i=1 bipi converges absolutely and∑

I bipi/
∑

I pi =
∑

J bjpj/
∑

J pj for any I, J ⊂ N such that I∩J = ∅ and |I| � |J |.
The set of nondegenerate martingale measures P of the original (B,S)-market is de-
noted by P(Z,F); by NBC(Z) we denote the class of martingale measures satisfying
NBC.

Lemma 1. Let b1 < b2 < b3 < · · · . If

(bi − bi−1) min
1�j�i−1

pj >

∞∑
j=i+1

bjpj ∀ i � 2,

then the measure P satisfies NBC.

Note that the inequality from Lemma 1 for i = 2 and P ∈ P(Z,F) implies the
inequality a < b2. For such measures, the theorem on the nonemptiness of NBC(Z)
from [1] also holds minor refinements. The result can be instrumental in updating
the algorithms for calculating share prices in the market, interpolating the initial
(B,S)-market, and evaluating fair prices of financial liability and components of the
hedging portfolio [2].

Lemma 2. Let P̂ = {P ∈P(Z,F) : bi=δbi−1 ∀ i�2; pi =
1

δ+1pi−1 ∀ i�3; δ>0}.
Then P ∈ P̂ does not satisfy NBC.

Note that if p2 � 1/(δ + 1), then a > b2 under the hypotheses of Lemma 2.
Topical here is the consideration of arbitrage-free complete markets, i.e., markets

such that P ∈ NBC(Z).

31Supported by the Russian Foundation for Basic Research (grant 16-01-00184).
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L. K. Shiryaeva (Samara, Russia). On properties of Grubbs statistics in
the case of normal sample with outlier.

Consider the Grubbs statistics

Tn,(1) =
X −min{Xi}

S
and T (1)

n =
max{Xi} −X

S
,

as calculated for a normal sample of size n (see [1]). Assume that in the sample
{Xi}ni=1 there is one abnormal observation (outlier) and its number is unknown. We
believe that the outlier differs from other observations by the shift α and scale pa-
rameters ν > 0. We denote

Gn,(1)(t;α, ν) = P(Tn,(1) < t), G(1)
n (t;α, ν) = P(T (1)

n < t),

Υn(x, y;α, ν) = P(Tn,(1) < x, T (1)
n < y).

Recursive relationships for description of marginal functions of Grubbs statistics
and the function of their joint distribution were found in [2]. An algorithm for com-
puting such distribution functions is constructed. The effect of the parameters n, α,
and ν on numerical characteristics of Grubbs statistics is studied. To investigate the
strength of interdependence between Grubbs statistics, an algorithm for calculating
estimates of the Spearman and Kendal rank correlation coefficients, as well as the
Pearson linear correlation coefficient, is developed. Statistical modeling show that
the force of interdependence between the marginals decreases with increasing n but
increases with increasing ν and |α|. The following theorem describes properties of the
Grubbs distribution functions.

Theorem. Let

Σn =

[
1√
n
� x � n− 1√

n
; θn(x) � y � n− 1√

n

]
, n > 2,

and

θn(x) =
x

n− 1
+
√
n− 2

√
1− nx2

(n− 1)2
.

Then, for all (x, y) ∈ Σn,

Υn(x, y;α, ν) = Gn,(1)(x;α, ν) +G(1)
n (y;α, ν)− 1.

REFERENCES
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Russian Math. (Iz. VUZ), 61 (2017), pp. 72–88.
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A.A. Shishkova (Tomsk,Russia).Hedging problem for theAsian option.32

Consider a standard Black–Scholes model with several risky assets. We assume
that the time horizon is T = 1. The riskless asset is a constant over the entire time
interval (B = 1), and the risky assets with price processes (Si(t))1�i�d are driven by
the system of SDEs

dSi(t) = σiSi(t) dWi(t), 0 � t � 1, i = 1, . . . , d.

The Asian option payoff function is given by

f1 =

(
1

d

∫ 1

0

d∑
i=1

Si(t) dt−K

)
+

,

where K is the strike price. The main result of the present work is the formula for
calculating the hedging strategy

γi(t) = G′
yi
(t, ξ(t), S(t)), 0 � t � 1, i = 1, . . . , d,

where

G(t, x, y) = E

(
1

d

( d∑
i=1

xi +

d∑
i=1

yiη̃i(v)

)
−K

)
+

,

ξi(t) =
∫ t

0 Si(v) dv, and η̃i(v) =
∫ v

0 exp {σiWi(u)− σ2
i u/2}du, v = 1 − t. Using

a Brownian bridge, we find the densities of random variables η̃i(v) and study the
analytic properties (differentiability) of the densities obtained. The above problem is
solved based on the results presented in [2]. The function G(t, x, y) can be represented
by the Itô formula, since we proved the following theorem for this function.

Theorem 1. Let η̃i(v) =
∫ v

0
exp{σiWi(u)− uσ2

i /2} du be random variables, and
let x = (x1, . . . , xd) and y = (y1, . . . , yd) be vectors. Then the function

G(t, x, y) = E

(
1

d

( d∑
i=1

xi +

d∑
i=1

yiη̃i(t)

)
−K

)
+

has continuous derivatives ∂G/∂t, ∂G/∂xi, ∂G/∂yi, ∂
2G/∂y2i .
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32Supported by the governmental target programme of the Ministry of Education and Science of
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S. G. Shorokhov (Moscow, Russia). On option prices in some local volatil-
ity models.

We study the European option pricing problem in local volatility models when
the asset dynamics is described by the stochastic differential equation dSt = rSt dt+
σ(St, t)St dWt, S(t0) = S0 > 0, where the volatility σ is a function of the asset price St

and time t. Basically, the European option pricing problem reduces to determination
of the transition probability density function via an initial value problem with delta
function for the Fokker–Planck partial differential equation and consequent calculation
of option prices satisfying the Black–Scholes–Merton partial differential equation with
corresponding boundary conditions. From the analytic formula for the European call
option price one can recover the volatility function by Dupire’s formula [1].

We outline both well-known local volatility models [2] and give some new local
volatility models related to the nonlinear partial differential equation for the volatility
function from [3]. Application of local volatility models in derivative pricing and
assessing market [4] and credit [5] risks is discussed.

REFERENCES

[1] B. Dupire, Pricing with a smile, Risk, 7 (1994), pp. 18–20.
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[3] P. Carr, M. Tari, and T. Zariphopoulou, Closed Form Option Valuation

with Smiles, NationsBanc Montgomery Securities, TZ-TechnicalReport-11, 1999,
https://web.ma.utexas.edu/users/zariphop/pdfs.

[4] S. G. Shorokhov, Introduction to Models of Quantitative Estimate of Market Risks, RUDN,
Moscow, 2017 (in Russian).

[5] S. G. Shorokhov, Introduction to Models of Quantitative Estimate of Credit Risks, RUDN,
Moscow, 2018 (in Russian).

N. V. Smorodina (St. Petersburg Department of Steklov Mathematical Insti-
tute of Russian Academy of Sciences, St. Petersburg, Russia). Approximation of an
evolution operator by mathematical expectations of functionals of Poisson
random fields. 33

Consider an operator H = −(1/2)d2/dx2 + V (x) on the domain W 2
2 (R). We

assume that a potential V is real-valued and bounded, which implies that the opera-
tor H is self-adjoint. In this case, the family of operators e−itH is a group of unitary
operators in L2(R). The operator e−itH maps a function ϕ ∈ W 2

2 (R) into the solution
u(t, x) of the Cauchy problem for the Schrödinger equation i∂u/∂t = Hu with initial
function u(0, x) = ϕ(x) (for more details, see [1]). It is well known that for the heat
equation ∂u/∂t = −Hu the solution of the Cauchy problem with the initial function
u(0, x) = ϕ(x) admits a probabilistic representation in the form of an expectation of
a Wiener process functional (the Feynmann–Kac formula). Namely,

u(t, x) = e−tHϕ(x) = E

[
ϕ(x + w(t)) exp

{
−
∫ t

0

V (x+ w(τ)) dτ

}]
,

where w(t) is a standard Wiener process. The last formula means that one can
simulate the evolution of the initial function ϕ under the heat semigroup e−tH by
statistical methods. To this end, it suffices to be able to generate the trajectories of
the Wiener process.

33Supported by the Russian Science Foundation (grant 17-11-01136).
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In the present talk, a similar approach is developed for the operator e−itH .
Namely, we construct a family Qt

ε of operators in L2(R), which depend on the addi-
tional parameter ε > 0 and possess the following properties:

(1) for each ε > 0, the family Qt
ε is a semigroup; i.e., Qt+s

ε = Qt
εQ

s
ε;

(2) the operator norm of the operator Qt
ε is not greater than 1;

(3) the operatorQt
ε is defined as the expectation of a Poisson point field functional;

(4) as ε→ 0 the operators Qt
ε approximate the operator e−itH in strong operator

topology; i.e., ‖Qt
εϕ− e−itHϕ‖2 → 0 for any ϕ ∈ L2(R) for ε→ 0.

As in the case of the heat conduction equation, the evolution of the wave func-
tion can be statistically modeled under this approach by generating realizations of
a random point field. It is also worth mentioning that the square of the wave func-
tion modulus is always a density of a probability distribution. The evolution of the
wave function generates the evolution of the probability distribution density, which is
usually called a “quantum random walk.” The approach proposed here gives a the-
oretic possibility of simulating the “quantum random walk” by classical statistical
machinery. A particular case of the above construction (for V = 0) can be found
in [2].

REFERENCES

[1] J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, 2nd ed.,
Springer-Verlag, New York, 1987.

[2] I. A. Ibragimov, N. V. Smorodina, and M. M. Faddeev, On a limit theorem related to
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J. Math. Sci. (N.Y.), 229 (2018), pp. 702–713.

D. A. Suchkova (Ufa, Russia). Construction of the solution of the sto-
chastic long wave equation (BBM) with white noise dispersion.

The deterministic BBM (Benjamin–Bona–Mahony) equation

(1) ut + ux + uux − uxxt = 0,

as an approximation for the description of unidirectional propagation of waves with
small wave-amplitude and large wavelength in nonlinear dispersive systems, has sev-
eral advantages in comparison with the well-known Korteweg–de Vries equation [1].
In particular, the phase velocitiy and group velocity corresponding to (1) are bounded
for all wave numbers; moreover, both velocities approach zero for large wave numbers.

The stochastic BBM equation (the regularized long wave equation with white
noise dispersion)

(2) dut − duxx + ux ∗ dW + uux dt = 0, u(s) = us,

is a more adequate model of particular physical systems which are stochastic in na-
ture. The introduction of white noise in the dispersion term justifies this observation
numerically [2]. The existence and uniqueness of the solution of problem (2) were
proved previously in [2] for a certain class of functions.

It is shown that in order to find a solution to problem (2) it is sufficient to know the
solution of the original problem (1); in this case, the solution to (2) is a determinate
function of a Wiener process [3].

Theorem (on the structure of the solution). Let φ(x, t) be a function of the
deterministic BBM equation (1). Then the function u = −φ(W (t) + x, t) − 1 is
a solution of problem (2).
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Using this method, the numerical simulation of the solution is performed.

The author is grateful to Professor F. S. Nasyrov who paid much attention to this
work.
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A. I. Sukhinov (Rostov-on-Don, Russia), V. V. Sidoryakina (Taganrog, Rus-
sia). Combined stochastic models of sediment transport and multicompo-
nent suspension of coastal systems. 34

This work is devoted to the construction of a joint model of sediment [1] and
suspension [2] transport in a coastal zone with due account of the stochastic na-
ture of wind waves [3], which are the main factor controlling the flow, and therefore
the movement, of bottom sediments and suspended matter in a coastal zone. The
correctness of the model is investigated, and the convergence of the approximating
chain of problems to the solution of the initial nonlinear problem in norm of the
Sobolev space L1 with velocity O (τ) is proved, where τ is the time step. The model
takes into account many physically significant factors such as the complicated bot-
tom relief, the porosity of bottom sediments, the size and density of particles, its
components, the effect of gravity, etc., and it also requires the diffusion coefficient
and the tangential stress value near the bottom surface. The diffusion coefficient de-
pends mainly on the frequency of the wind waves described, in general, by the semi-
empirical distribution function Sξ(ω) (ω is the wave frequency), which has high- and
low-frequency components [3]. The energy E is proportional to the square of the
amplitude of the wave and can be determined from the frequency spectrum as its av-
erage value. The energy value E in a given frequency interval is found from formula

ΔE = ρωg
∫ ω+Δω

ω
Sξ(ω) dω, where ρω is the density of water, and g is the acceleration

of gravity. As the value of wind wave frequency, it is proposed to use its expectation;
if experimental data for wave frequency distribution are available, the average value
is used. Determination of the velocity distribution of the water medium is carried out
numerically on the basis of a 3D model of hydrodynamics. The input data are the
distribution of the heights of the wind waves, which is described near the boundary
of the bottom influence zone by a function close to the Rayleigh distribution. It is
proposed to use the expected value for the heights of wind waves as input data for
the 3D model of wave hydrodynamics.
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[2] A. I. Sukhinov and A. A. Sukhinov, Reconstruction of 2001 ecological disaster in the Azov sea
on the basis of precise hydrophysics models, in Parallel Computational Fluid Dynamics. Mul-
tidisciplinary Applications (Las Palmas de Gran Canaria, Spain), Elsevier B. V., Amsterdam,
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A. N. Tikhomirov (Syktyvkar, Russia). Local limit theorems for random
matrices. 35

In this talk we survey the latest results on local limit theorems for various en-
sembles of random matrices, including Wigner matrices, sample covariance matrices,
Ginibre–Girko matrices, and their products.

Significant progress in this area was achieved in the last decade, largely due to
the works of a group led by H.-T. Yau and L. Erdös; see the papers [1], [2], [3],
[4]. The main problem is the study of the behavior of the Stieltjes transform of the
empirical spectral distribution (ESD) of Hermitian random matrices of large order
on the complex plane near the real axis if the distance to the real axis is inversely
proportional to the size n of the matrix up to a logarithmic factor. Estimates of the
closeness of the Stieltjes transform of the ESD of a random matrix to the Stieltjes
transform of the corresponding limit distribution (the semicircle law in the case of
Wigner matrices, and the Marchenko–Pastur distribution law in the case of sample
matrices) are of order (nv)−1 logβ n, where v is the distance to the real axis in the
complex plane, and β is a quantity that depends on n but grows no faster than
log logn. Estimates of this kind can be used to provide information about the local
behavior of the spectrum of a random matrix, i.e., about the distribution of the
eigenvalues in a small neighborhood of a fixed point; give the limiting distribution for
so-called spacings, i.e., the distances between neighborhood eigenvalues; estimate the
closeness of eigenvalues to the corresponding quantiles of the limiting distribution (the
rigidity of the spectrum), etc. In joint works of the author with F. Götze, A. Naumov,
and D. Timushev, the main emphasis was placed on developing methods suitable for
obtaining estimates of the order O((nv)−l logβ n) under minimal moment assumptions
and with optimal order β. Corresponding results are given in the papers [5], [6], [7],
[8].
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[6] F. Götze, A. Naumov, A. Tikhomirov, and D. Timushev, On the local semicircular law for
Wigner ensemble, Bernoulli, 24 (2018), pp. 2358–2400.
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[8] F. Götze, A. A. Naumov, and A. N. Tikhomirov, Local semicircle law under moment con-
ditions: Stieltjes transform, rigidity, and delocalization, Theory Probab. Appl., 62 (2018),
pp. 58–83.

M. S. Tikhov (University of Nizhni Novgorod, Nizhni Novgorod, Russia).
Fourier method for recursive estimation of distribution function in
dose-effect relationship.

Let U (n) = {(U1,W1), . . . , (Un,Wn)} be independent and identically distributed
pairs of random variables, where Ui is interpreted as a “dose” and Wj = I(Xj < Uj)
is an indicator of the event (Xj < Uj) (the “effect”); the random variables {Xj}nj=1

have a common distribution function F (x) = P(Xj < x) with density f(x). The
distribution function G(u) = P(Uj < u) has density g(u) with respect to a Lebesgue
measure λ on the real line R. It is required, from the sample U (n), to estimate the
unknown distribution function F (x) or its quantiles; the distribution function G(u)
is also unknown. This model is interpreted as a “dose-effect” relationship [1], [2], [3].

As an estimate of the distribution function F (x), we take

F̂n(x) =
S2,n(x)

S1,n(x)
,

where

S2,n(x) =
1

n

n∑
j=1

WjKbj(x, Uj), S1,n(x) =
1

n

n∑
j=1

Kbj (x, Uj),

Kb(x, u) = K((x− u)/b)/b, K(x) is a kernel function (finite symmetric density), and
{bj}nj=1 is a sequence of smoothing parameters.

The proof depends on recursive representations of the estimates F̂n(x) and ĝn(x),

ĝn(x) = S1,n(x) = ĝn−1(x) + n−1[Kbn(x, Un)− ĝn−1(x)];

F̂n(x) = F̂n−1(x) + γn[Wn − F̂n−1(x)], γn = γn(x) = (ĝn(x)n)
−1Kbn(x, Un).

Let Bn =
∑n

j=1 b
−1
j . Under some regularity conditions on g(x) and f(x), and

under the conditions (see [4, pp. 184, 185])

(D1) bn → 0, n2B−1
n → ∞, (D2) min

1�j�n
bj = o(Bn)

as n → ∞, the sequence nB
−1/2
n (F̂n(x0) − E(F̂n(x0))) is asymptotically normal

N(0, F (x0)(1 − F (x0))‖K‖2/g(x0)).
We also consider the estimation problem of the distribution function F (x) in

the convolution model using the Fourier method, and the problem of estimation of
distributions using the theory of reproduced kernels.
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(in Russian).

[2] M. S. Tikhov, Statistical estimation on the basis of interval-censored data, J. Math. Sci. (N.Y.),
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[3] M. Tikhov and M. Ivkin, A new Yang-type estimator of distribution function at quantal
response over indirect data, WSEAS Trans. Math., 13 (2014), pp. 684–693.

[4] J. Hájek, Z. Šidák, and K. P. Sen, Theory of Rank Tests, 2nd ed., Probab. Math. Statist.,
Academic Press, San Diego, CA, 1999.
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V. V. Ulyanov (Moscow, Russia). Nonasymptotic bounds for the closeness
of Gaussian measures of balls. 36

The talk provides an overview of the tight nonasymptotic bounds for the Kol-
mogorov distance between the probabilities of two Gaussian elements to hit a ball of
a Hilbert space. The key property of these bounds is that they are dimension-free
and depend on the nuclear (Schatten-one) norm of the difference between the covari-
ance operators of the Gaussian elements, and on the norm of the mean shift. The
bounds obtained significantly improve the bound based on Pinsker’s inequality via
the Kullback–Leibler divergence. We also establish anticoncentration bounds for the
squared norm of a noncentered Gaussian element in a Hilbert space. A number of
examples motivating our results and their applications to statistical inference and to
high-dimensional CLT (see, e.g., [1]) are given. The statements and proofs of the
results mentioned in the talk can be found in [2], [3], [4], [5], [6]; see also the author’s
pages on MathNet.ru and ResearchGate.net. Here we give two principal results from
[4] and [5].

Let H be a real separable Hilbert space with norm ‖ · ‖.

Theorem 1. Let ξ and η be Gaussian elements in H with zero mean and covari-
ance operators Σξ and Ση, respectively. Let λ1ξ � λ2ξ � · · · and λ1η � λ2η � · · · be
the eigenvalues of Σξ and Ση, respectively. Then there exists an absolute constant C
such that

sup
x>0

∣∣P(‖ξ‖ � x)−P(‖η‖ � x)
∣∣ � C

(
(Λ1ξΛ2ξ)

−1/2 + (Λ1ηΛ2η)
−1/2

) ∞∑
i=1

|λiξ − λiη|

for Λ2
kξ :=

∑∞
j=k λ

2
jξ , Λ

2
kη :=

∑∞
j=k λ

2
jη , k = 1, 2.

The following estimate for the probability density function p(x) of the random
variable ‖ξ‖2 plays an important role in the proof of Theorem 1.

Lemma 1. Let ξ be a Gaussian element in a separable Hilbert space H with zero
mean and a covariance operator Σξ. Then, for some constant c,

(1) max
x�0

p(x) � c(Λ1ξΛ2ξ)
−1/2.

If the “effective” dimension of Σξ is at least 2, i.e., if 2λ21ξ � Λ2
1ξ, then Λ1ξ ≈ Λ2ξ

and the right-hand side of (1) is inversely proportional to the Frobenius norm Λ1ξ

for Σξ. In particular, in the d-dimensional case H = Rd for d � 2, if Σξ is close to
the identity matrix I, then maxx�0 p(x) � cd−1/2 by (1), which is consistent with
the maximum value of the chi-square distribution density function with d degrees of
freedom.
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Stat. 42, Springer, Heidelberg, 2013, pp. 235–249.

[2] S. S. Barsov and V. V. Ul’yanov, Difference of Gaussian measures, J. Soviet Math., 38
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36Supported by the Russian Academic Excellence Project “5-100.”
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[4] F. Götze, A. Naumov, V. Spokoiny, and V. Ulyanov, Large Ball Probabilities, Gaussian
Comparison and Anti-Concentration, preprint, arXiv:1708.08663v2, 2018.

[5] A. A. Naumov, V. G. Spokoiny, Yu. E. Tavyrikov, and V. V. Ulyanov, Nonasymptotic
estimates for the closeness of Gaussian measures on balls, Dokl. Math., 98 (2018), pp. 490–493.

[6] A. Naumov, V. Spokoiny, and V. Ulyanov, Bootstrap Confidence Sets for Spectral Projectors
of Sample Covariance, preprint, arXiv:1703.00871, 2017.

V. A. Vasiliev (Tomsk, Russia). Optimal parameter estimation of an
autoregression by observations with additive noise. 37

Consider the estimation problem of the parameter λ of a scalar autoregressive
process (xn)n�0 satisfying the equation

(1) xn = λxn−1 + ξn, n � 1,

from observations yn = xn + ηn, n � 0. Process (1) is supposed to be stable, i.e.,
|λ| < 1. The processes (ξn), (ηn), and x0 are mutually independent; the noises ξn
and ηn form sequences of i.i.d.r.v., and the variance of the noise in the observations
Eη20 is unknown. We construct estimators λn of the parameter λ on the basis of the
truncated estimation method [1]. These estimators are optimal in the sense of the
criterion

Rn = AE(λn − λ)2 + n→ min
n
.

The parameter A can be interpreted as the cost of the mean square quality of the
parameter λ estimator. Asymptotic properties of the optimal sample size and the risk
function Rn as A → ∞ are investigated. Optimization problems in the sense of the
risk function of a similar structure were first considered in the book [2] and references
therein.

REFERENCES

[1] V. A. Vasiliev, A truncated estimation method with guaranteed accuracy, Ann. Inst. Statist.
Math., 66 (2014), pp. 141–163.

[2] H. Chernoff, Sequential Analysis and Optimal Design, CBMS–NSF Reg. Conf. Ser. Appl.
Math. 8, SIAM, Philadelphia, 1972.

T. A. Volosatova, I. V. Pavlov (Rostov-on-Don, Russia). Solution of the
minimax problem for the objective function of a quasilinear complex sys-
tem with deterministic priorities. 38

This talk, which is concerned with the investigation of models of economic sys-
tems with finite number of deterministic priorities, is a continuation of the studies
[1] and [2]. In accordance with the notation of [1], we write the objective function of

an arbitrator in the form F (u) =
∏k−1

j=1 u
αj

j

(
−
∑k−1

i=1 ciui + ck
)αk

, where αi ∈ (0; 1),

ui > 0, ci > 0, i = 1, . . . , k, and ck =
∑k−1

i=1 cibi + bk. The objective function has
a unique stationary point, which is a local (and global) maximum point (cf. [1, The-
orem 1]). The components of this point are as follows: uj =αjck/cj , j = 1, . . . , k− 1.
The maximal value of the target function reads as

Fmax = (ck)
∑k

i=1 αi

k−1∏
j=1

(
αj

cj

)αj
(
−

k−1∑
i=1

αi + 1

)αk

.

37Supported by the Russian Science Foundation (grant no. 17-11-01049).
38Supported by the Russian Foundation for Basic Research (grant 16-01-00184).
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By varying the values of the coefficients ci, we obtain various modifications of the
mathematical model of the economic system. It is natural to believe that the main
goal of the arbitrator is to optimally manage the entire system with the minimum
possible cost. In this connection, a new optimization problem arises: to minimize the
function Fmax(c). The following result holds.

Theorem 1. If bi > 0 for all i = 1, . . . , k, then the function Fmax(c) is a unique
point of local (and also global) minimum

c∗ = (c∗1, . . . , c
∗
k−1) : c∗j =

αjbk
bjαk

, j = 1, . . . , k − 1.

If bi � 0 for some i ∈ {1, . . . , k}, then the function Fmax(c) has no stationary points.

REFERENCES

[1] I. V. Pavlov and S. I. Uglich, Optimization of complex systems of quasilinear type with several
independent priorities, Vestn. RGUPS, no. 3(67), 2017, pp. 140–145.

[2] T. A. Volosatova and A. G. Danekyants, Optimization of quasilinear complicated sys-
tems: Case of three determined priorities, Meždunar. Nauč.-Issled. Žurn., no. 10-2(52), 2016,
pp. 127–132.

A. L. Yakymiv (Steklov Mathematical Institute, Moscow, Russia). Multivari-
ate regular variation and multiple power series distributions. 39

Let (a(i) � 0, i ∈ Zn
+) be a multiple sequence such that the power series

B(x) =
∑
i∈Zn

+

a(i)xi ≡
∑

i1,...,in∈Z+

a(i1, . . . , in)x
i1
1 · · ·xinn ∈ (0,∞)

for x = (x1, . . . , xn) ∈ [0, 1)n. Assume that, for x ∈ (0, 1)n, the random vector
ξx has the power series distribution B(x); i.e., P{ξx = i} = a(i)xi/B(x) for any
i ∈ Zn

+. Let b = b(k) = (b1(k), . . . , bn(k)) ∈ (0,∞)n, k ∈ N, be a sequence such
that bj = bj(k) → ∞ for any j = 1, . . . , n as k → ∞. We also assume that B(x) is
regularly varying as x ↑ 1 = (1, . . . , 1) along b = b(k); i.e.,

(1)
B(exp(−λ/b))
B(exp(−1/b))

≡ B(exp(−λ1/b1), . . . , exp(−λn/bn))
B(exp(−1/b1), . . . , exp(−1/bn))

→ Ψ(λ) ∈ (0,∞)

for any fixed λ = (λ1, . . . , λn) ∈ (0,∞)n as k → ∞. Further, assume that, for any
sequence zj = zj(k) > 1, zj = 1 + o(1) and for any j = 1, . . . , n, either the liminf of
the fraction a(b1, . . . , bj−1, zjbj, bj+1, . . . , bn)/a(b) is not smaller than 1 or the suplim
of this fraction is not greater than 1 as k → ∞. Given any fixed u ∈ (0,∞)n, we set
x = exp(−u/b). From (1) it follows that the function Ψ(λ) is the Laplace transform
of some σ-finite measure ν on Rn

+. Let ν be absolutely continuous in (0,∞)n with
continuous density ϕ( · ). Then, for any compact set K ⊂ (0,∞)n,

P{ξx = [y/(1− x)]}∏n
j=1(1− xj)

y∈K

⇒ ϕ(y/u) exp(−(y,1))∏n
j=1 ujΨ(u)

.

39This work was carried out in the framework of the state contract with Steklov Mathematical
Institute.

D
ow

nl
oa

de
d 

05
/0

4/
19

 to
 4

6.
24

2.
14

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3RD INTERNATIONAL CONFERENCE ON STOCHASTIC METHODS 169

The proof of this result depends substantially on Theorem 3 of [1]. A short survey of
different definitions of a multivariate regular variation is given in the talk.

REFERENCES

[1] A. L. Yakymiv, A Tauberian theorem for multiple power series, Sb. Math., 207 (2016),
pp. 286–313.

M. V. Zhitlukhin (Steklov Mathematical institute, Moscow, Russia),
K. A. Borovkov (The University of Melbourne, Australia). Estimates for the
maximum of a discretely sampled fractional Brownian motion.

Let {BH
t }t�0 denote the fractional Brownian motion with Hurst parameter H ∈

(0, 1], which by definition is a continuous Gaussian process with BH
0 = 0, zero mean,

and covariance function E(BH
s B

H
t ) = (s2H + t2H − |t− s|2H)/2, s, t � 0.

We show that the distribution of the maximum BH,T = maxt∈TB
H
t of the frac-

tional Brownian motion with Hurst parameter H → 0 over an n-point set T ⊂ [0, 1]
can be approximated by the normal law with mean

√
lnn and variance 1/2 provided

that n→ ∞ slowly enough, and the points in T are not too close to each other.
The main results are as follows. Let Hk ∈ (0, 1] be such that Hk → 0 as k → ∞,

and let Tk = {tk,i}nk

i=1 be a sequence of finite subsets of (0, 1], tk,1 < · · · < tk,nk
, such

that nk → ∞, δk := min1�i�nk
(ti − ti−1) → 0, where t0 = 0.

Denote by � the stochastic order relation for random variables, i.e., ξ � η if and
only if P(ξ � x) � P(η � x) for any x ∈ R. Let oP(1) stand for a sequence of random
variables converging to zero in probability.

Theorem. (i) If Hk(lnnk)
1/2 → 0 and Hk ln(nkδk) → 0 as k → ∞, then

BHk,Tk �
√
lnnk +

ζ0√
2
+ oP(1).

(ii) If Hk(lnnk)
2 → 0 and Hk ln δk → 0 as k → ∞, then

BHk,Tk �
√
lnnk +

ζ0√
2
+ oP(1).

In particular, under the assumptions of assertion (ii),

BHk,Tk −
√
lnnk

d−→ Z√
2

as k → ∞,

where Z has standard normal distribution. Note that the conditions Hk ln(nkδk) → 0
and Hk ln δk → 0 are automatically met in the case of uniform grids Tk. For the proof
the reader is referred to [3]. Other closely related results can be found in [1], [2].

REFERENCES
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D
ow

nl
oa

de
d 

05
/0

4/
19

 to
 4

6.
24

2.
14

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES
	REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


